論文の概要: Headless Horseman: Adversarial Attacks on Transfer Learning Models
- arxiv url: http://arxiv.org/abs/2004.09007v1
- Date: Mon, 20 Apr 2020 01:07:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 17:44:16.517081
- Title: Headless Horseman: Adversarial Attacks on Transfer Learning Models
- Title(参考訳): headless horseman: 転校学習モデルに対する敵対的攻撃
- Authors: Ahmed Abdelkader, Michael J. Curry, Liam Fowl, Tom Goldstein, Avi
Schwarzschild, Manli Shu, Christoph Studer, Chen Zhu
- Abstract要約: 我々はそのような分類器に対する移動可能な敵攻撃のファミリーを提示する。
まず,テキストのみの特徴抽出器を用いて,被害者ネットワークへの転送攻撃に成功した。
これはラベルブラインド敵攻撃の導入を動機付けている。
我々の攻撃は、CIFAR10でトレーニングされたResNet18の精度を40%以上下げる。
- 参考スコア(独自算出の注目度): 69.13927986055553
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning facilitates the training of task-specific classifiers using
pre-trained models as feature extractors. We present a family of transferable
adversarial attacks against such classifiers, generated without access to the
classification head; we call these \emph{headless attacks}. We first
demonstrate successful transfer attacks against a victim network using
\textit{only} its feature extractor. This motivates the introduction of a
label-blind adversarial attack. This transfer attack method does not require
any information about the class-label space of the victim. Our attack lowers
the accuracy of a ResNet18 trained on CIFAR10 by over 40\%.
- Abstract(参考訳): 伝達学習は、事前訓練されたモデルを特徴抽出器として使うタスク固有分類器の訓練を容易にする。
このような分類器に対する転送可能な攻撃のファミリーを、分類ヘッドにアクセスせずに生成し、これらを \emph{headless attack} と呼ぶ。
最初に,その特徴抽出器を用いて,被害者ネットワークへの転送攻撃に成功した。
これはラベル入りの敵対攻撃の導入を動機付けている。
この転送攻撃方法は、被害者のクラスラベル空間に関する情報を必要としない。
我々の攻撃は、CIFAR10でトレーニングされたResNet18の精度を40%以上下げる。
関連論文リスト
- Wicked Oddities: Selectively Poisoning for Effective Clean-Label Backdoor Attacks [11.390175856652856]
クリーンラベル攻撃は、毒性のあるデータのラベルを変更することなく攻撃を行うことができる、よりステルスなバックドア攻撃である。
本研究は,攻撃成功率を高めるために,標的クラス内の少数の訓練サンプルを選択的に毒殺する方法について検討した。
私たちの脅威モデルは、サードパーティのデータセットで機械学習モデルをトレーニングする上で深刻な脅威となる。
論文 参考訳(メタデータ) (2024-07-15T15:38:21Z) - GenFighter: A Generative and Evolutive Textual Attack Removal [6.044610337297754]
自然言語処理(NLP)におけるTransformerモデルのような、ディープニューラルネットワーク(DNN)に対するアドリラルアタックは大きな課題となる。
本稿では,訓練分類分布の学習と推論によって敵の堅牢性を高める新しい防衛戦略であるGenFighterを紹介する。
我々は、GenFighterが攻撃および攻撃成功率の指標の下で、最先端の防御能力より優れていることを示す。
論文 参考訳(メタデータ) (2024-04-17T16:32:13Z) - Adversarial Attacks are a Surprisingly Strong Baseline for Poisoning
Few-Shot Meta-Learners [28.468089304148453]
これにより、システムの学習アルゴリズムを騙すような、衝突する入力セットを作れます。
ホワイトボックス環境では、これらの攻撃は非常に成功しており、ターゲットモデルの予測が偶然よりも悪化する可能性があることを示す。
攻撃による「過度な対応」と、攻撃が生成されたモデルと攻撃が転送されたモデルとのミスマッチという2つの仮説を探索する。
論文 参考訳(メタデータ) (2022-11-23T14:55:44Z) - Narcissus: A Practical Clean-Label Backdoor Attack with Limited
Information [22.98039177091884]
クリーンラベル」バックドア攻撃には、トレーニングセット全体の知識が必要である。
本稿では,対象クラスの代表例の知識のみに基づいて,クリーンラベルバックドア攻撃をマウントするアルゴリズムを提案する。
私たちの攻撃は、物理的な世界にトリガーが存在する場合でも、データセットやモデル間でうまく機能します。
論文 参考訳(メタデータ) (2022-04-11T16:58:04Z) - Adversarial Transfer Attacks With Unknown Data and Class Overlap [19.901933940805684]
現在の移動攻撃の研究は、攻撃者にとって非現実的な優位性を持っている。
攻撃者および被害者が不完全な設定で利用可能なデータに着目した敵攻撃の転送に関する最初の研究について述べる。
この脅威モデルは、医学、マルウェアなどの応用に関係している。
論文 参考訳(メタデータ) (2021-09-23T03:41:34Z) - Hidden Backdoor Attack against Semantic Segmentation Models [60.0327238844584]
Emphbackdoor攻撃は、深層ニューラルネットワーク(DNN)に隠れたバックドアを埋め込み、トレーニングデータに毒を盛ることを目的としている。
我々は,対象ラベルを画像レベルではなくオブジェクトレベルから扱う,新たな攻撃パラダイムであるemphfine-fine-grained attackを提案する。
実験により、提案手法はわずかなトレーニングデータだけを毒殺することでセマンティックセグメンテーションモデルを攻撃することに成功した。
論文 参考訳(メタデータ) (2021-03-06T05:50:29Z) - Poisoned classifiers are not only backdoored, they are fundamentally
broken [84.67778403778442]
一般的に研究されている、分類モデルに対するバックドア中毒攻撃の下で、攻撃者はトレーニングデータのサブセットに小さなトリガーを追加する。
毒を盛った分類器は、引き金を持つ敵のみに弱いと推定されることが多い。
本稿では,このバックドア型分類器の考え方が誤りであることを実証的に示す。
論文 参考訳(メタデータ) (2020-10-18T19:42:44Z) - Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching [56.280018325419896]
Data Poisoning攻撃は、トレーニングデータを変更して、そのようなデータでトレーニングされたモデルを悪意を持って制御する。
我々は「スクラッチから」と「クリーンラベルから」の両方である特に悪意のある毒物攻撃を分析します。
フルサイズで有毒なImageNetデータセットをスクラッチからトレーニングした現代のディープネットワークにおいて、ターゲットの誤分類を引き起こすのは、これが初めてであることを示す。
論文 参考訳(メタデータ) (2020-09-04T16:17:54Z) - Label-Only Membership Inference Attacks [67.46072950620247]
ラベルのみのメンバシップ推論攻撃を導入する。
我々の攻撃は、摂動下でのモデルが予測するラベルの堅牢性を評価する。
差分プライバシーと(強い)L2正規化を備えたトレーニングモデルは、唯一知られている防衛戦略である。
論文 参考訳(メタデータ) (2020-07-28T15:44:31Z) - Adversarial Imitation Attack [63.76805962712481]
現実的な敵攻撃は、攻撃されたモデルの知識をできるだけ少なくする必要がある。
現在の代替攻撃では、敵の例を生成するために事前訓練されたモデルが必要である。
本研究では,新たな敵模倣攻撃を提案する。
論文 参考訳(メタデータ) (2020-03-28T10:02:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。