Invariant Integration in Deep Convolutional Feature Space
- URL: http://arxiv.org/abs/2004.09166v1
- Date: Mon, 20 Apr 2020 09:45:43 GMT
- Title: Invariant Integration in Deep Convolutional Feature Space
- Authors: Matthias Rath and Alexandru Paul Condurache
- Abstract summary: We show how to incorporate prior knowledge to a deep neural network architecture in a principled manner.
We report state-of-the-art performance on the Rotated-MNIST dataset.
- Score: 77.99182201815763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this contribution, we show how to incorporate prior knowledge to a deep
neural network architecture in a principled manner. We enforce feature space
invariances using a novel layer based on invariant integration. This allows us
to construct a complete feature space invariant to finite transformation
groups.
We apply our proposed layer to explicitly insert invariance properties for
vision-related classification tasks, demonstrate our approach for the case of
rotation invariance and report state-of-the-art performance on the
Rotated-MNIST dataset. Our method is especially beneficial when training with
limited data.
Related papers
- Uniform Transformation: Refining Latent Representation in Variational Autoencoders [7.4316292428754105]
We introduce a novel adaptable three-stage Uniform Transformation (UT) module to address irregular latent distributions.
By reconfiguring irregular distributions into a uniform distribution in the latent space, our approach significantly enhances the disentanglement and interpretability of latent representations.
Empirical evaluations demonstrated the efficacy of our proposed UT module in improving disentanglement metrics across benchmark datasets.
arXiv Detail & Related papers (2024-07-02T21:46:23Z) - Task Adaptive Feature Transformation for One-Shot Learning [21.20683465652298]
We introduce a simple non-linear embedding adaptation layer, which is fine-tuned on top of fixed pre-trained features for one-shot tasks.
We show consistent improvements over a variety of one-shot benchmarks, outperforming recent state-of-the-art methods.
arXiv Detail & Related papers (2023-04-13T21:52:51Z) - Reparameterization through Spatial Gradient Scaling [69.27487006953852]
Reparameterization aims to improve the generalization of deep neural networks by transforming convolutional layers into equivalent multi-branched structures during training.
We present a novel spatial gradient scaling method to redistribute learning focus among weights in convolutional networks.
arXiv Detail & Related papers (2023-03-05T17:57:33Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
We address the problem of improving the performance and in particular the sample complexity of deep neural networks.
Group-equivariant convolutions are a popular approach to obtain equivariant representations.
We propose a multi-stream architecture, where each stream is invariant to a different transformation.
arXiv Detail & Related papers (2023-03-02T20:44:45Z) - Equivariant Architectures for Learning in Deep Weight Spaces [54.61765488960555]
We present a novel network architecture for learning in deep weight spaces.
It takes as input a concatenation of weights and biases of a pre-trainedvariant.
We show how these layers can be implemented using three basic operations.
arXiv Detail & Related papers (2023-01-30T10:50:33Z) - A Simple Strategy to Provable Invariance via Orbit Mapping [14.127786615513978]
We propose a method to make network architectures provably invariant with respect to group actions.
In a nutshell, we intend to 'undo' any possible transformation before feeding the data into the actual network.
arXiv Detail & Related papers (2022-09-24T03:40:42Z) - Improving the Sample-Complexity of Deep Classification Networks with
Invariant Integration [77.99182201815763]
Leveraging prior knowledge on intraclass variance due to transformations is a powerful method to improve the sample complexity of deep neural networks.
We propose a novel monomial selection algorithm based on pruning methods to allow an application to more complex problems.
We demonstrate the improved sample complexity on the Rotated-MNIST, SVHN and CIFAR-10 datasets.
arXiv Detail & Related papers (2022-02-08T16:16:11Z) - Fine-Grained Dynamic Head for Object Detection [68.70628757217939]
We propose a fine-grained dynamic head to conditionally select a pixel-level combination of FPN features from different scales for each instance.
Experiments demonstrate the effectiveness and efficiency of the proposed method on several state-of-the-art detection benchmarks.
arXiv Detail & Related papers (2020-12-07T08:16:32Z) - BasisVAE: Translation-invariant feature-level clustering with
Variational Autoencoders [9.51828574518325]
Variational Autoencoders (VAEs) provide a flexible and scalable framework for non-linear dimensionality reduction.
We show how a collapsed variational inference scheme leads to scalable and efficient inference for BasisVAE.
arXiv Detail & Related papers (2020-03-06T23:10:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.