Topological Quantum Walk with Discrete Time-Glide Symmetry
- URL: http://arxiv.org/abs/2004.09332v3
- Date: Wed, 15 Jul 2020 10:35:37 GMT
- Title: Topological Quantum Walk with Discrete Time-Glide Symmetry
- Authors: Ken Mochizuki, Takumi Bessho, Masatoshi Sato, and Hideaki Obuse
- Abstract summary: We formulate discrete space-time symmetry in quantum walks and evaluate the corresponding symmetry protected topological phases.
Due to discrete nature of time evolution, the topological classification is found to be different from that in conventional Floquet systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete quantum walks are periodically driven systems with discrete time
evolution. In contrast to ordinary Floquet systems, no microscopic Hamiltonian
exists, and the one-period time evolution is given directly by a series of
unitary operators. Regarding each constituent unitary operator as a discrete
time step, we formulate discrete space-time symmetry in quantum walks and
evaluate the corresponding symmetry protected topological phases. In
particular, we study chiral and/or time-glide symmetric topological quantum
walks in this formalism. Due to discrete nature of time evolution,the
topological classification is found to be different from that in conventional
Floquet systems. As a concrete example, we study a two-dimensional quantum walk
having both chiral and time-glide symmetries, and identify the anomalous edge
states protected by these symmetries.
Related papers
- Dual Symmetry Classification of Non-Hermitian Systems and $\mathbb{Z}_2$ Point-Gap Topology of a Non-Unitary Quantum Walk [0.8739101659113157]
Non-Hermitian systems exhibit richer topological properties compared to their Hermitian counterparts.
Non-Hermitian systems can be classified in two ways; a non-Hermitian system can be classified using the symmetry relations for non-Hermitian Hamiltonians or time-evolution operator.
arXiv Detail & Related papers (2024-03-07T01:55:30Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Measurement events relative to temporal quantum reference frames [44.99833362998488]
We compare two consistent approaches to the Page-Wootters formalism to clarify the operational meaning of evolution and measurements.
We show that for non-ideal clocks, the purified measurement approach yields time non-local, non-unitary evolution.
arXiv Detail & Related papers (2023-08-21T18:26:12Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Topology, criticality, and dynamically generated qubits in a stochastic
measurement-only Kitaev model [0.059083469750614785]
We consider a paradigmatic solvable model of topological order in two dimensions, Kitaev's honeycomb Hamiltonian.
We turn it into a measurement-only dynamics consisting of measurements of two-qubit bond operators.
We observe an unusual behavior for the dynamical purification of mixed states, characterized at late times by the dynamical exponent $z = 1/2$.
arXiv Detail & Related papers (2022-07-14T17:46:04Z) - Observing Floquet topological order by symmetry resolution [0.0]
In the presence of periodic driving, topological Floquet phases can be identified in terms of a cycling of symmetry blocks between different charge quantum numbers.
An equivalent signature of the topological Floquet phase is identified as a computational power allowing to teleport quantum information.
arXiv Detail & Related papers (2021-09-02T18:00:05Z) - Observation of symmetry-protected selection rules in periodically driven
quantum systems [8.674241138986925]
Periodically driven quantum systems, known as Floquet systems, have been a focus of non-equilibrium physics in recent years.
We show how to characterize dynamical symmetries by observing the symmetry-induced selection rules between Floquet states.
Our work shows how to exploit the quantum control toolkit to study dynamical symmetries that can arise in topological phases of strongly-driven Floquet systems.
arXiv Detail & Related papers (2021-05-25T20:45:32Z) - Symmetry-resolved dynamical purification in synthetic quantum matter [1.2189422792863447]
We show that symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics.
Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems.
arXiv Detail & Related papers (2021-01-19T19:01:09Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.