Dual Symmetry Classification of Non-Hermitian Systems and $\mathbb{Z}_2$ Point-Gap Topology of a Non-Unitary Quantum Walk
- URL: http://arxiv.org/abs/2403.04147v4
- Date: Sat, 8 Jun 2024 02:59:57 GMT
- Title: Dual Symmetry Classification of Non-Hermitian Systems and $\mathbb{Z}_2$ Point-Gap Topology of a Non-Unitary Quantum Walk
- Authors: Zhiyu Jiang, Ryo Okamoto, Hideaki Obuse,
- Abstract summary: Non-Hermitian systems exhibit richer topological properties compared to their Hermitian counterparts.
Non-Hermitian systems can be classified in two ways; a non-Hermitian system can be classified using the symmetry relations for non-Hermitian Hamiltonians or time-evolution operator.
- Score: 0.8739101659113157
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Non-Hermitian systems exhibit richer topological properties compared to their Hermitian counterparts. It is well known that non-Hermitian systems have been classified based on either the symmetry relations for non-Hermitian Hamiltonians or the symmetry relations for non-unitary time-evolution operators in the context of Floquet topological phases. In this work, we propose that non-Hermitian systems can always be classified in two ways; a non-Hermitian system can be classified using the symmetry relations for non-Hermitian Hamiltonians or time-evolution operator regardless of the Floquet topological phases or not. We refer to this as dual symmetry classification. To demonstrate this, we successfully introduce a new non-unitary quantum walk that exhibits point gaps with a $\mathbb{Z}_2$ point-gap topological phase applying the dual symmetry classification and treating the time-evolution operator of this quantum walk as the non-Hermitian Hamiltonian.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Topological Order in the Spectral Riemann Surfaces of Non-Hermitian Systems [44.99833362998488]
We show topologically ordered states in the complex-valued spectra of non-Hermitian systems.
These arise when the distinctive exceptional points in the energy surfaces of such models are annihilated.
We illustrate the characteristics of the topologically protected states in a non-Hermitian two-band model.
arXiv Detail & Related papers (2024-10-24T10:16:47Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Three perspectives on entropy dynamics in a non-Hermitian two-state system [41.94295877935867]
entropy dynamics as an indicator of physical behavior in an open two-state system with balanced gain and loss is presented.
We distinguish the perspective taken in utilizing the conventional framework of Hermitian-adjoint states from an approach that is based on biorthogonal-adjoint states and a third case based on an isospectral mapping.
arXiv Detail & Related papers (2024-04-04T14:45:28Z) - Homotopy, Symmetry, and Non-Hermitian Band Topology [4.777212360753631]
We show that non-Hermitian bands exhibit intriguing exceptional points, spectral braids and crossings.
We reveal different Abelian and non-Abelian phases in $mathcalPT$-symmetric systems.
These results open the door for theoretical and experimental exploration of a rich variety of novel topological phenomena.
arXiv Detail & Related papers (2023-09-25T18:00:01Z) - Construction of Non-Hermitian Parent Hamiltonian from Matrix Product
States [23.215516392012184]
We propose a new method to construct non-Hermitian many-body systems by generalizing the parent Hamiltonian method into non-Hermitian regimes.
We demonstrate this method by constructing a non-Hermitian spin-$1$ model from the asymmetric Affleck-Kennedy-Lieb-Tasaki state.
arXiv Detail & Related papers (2023-01-29T14:13:55Z) - Mesoscopic M\"obius ladder lattices as non-Hermitian model systems [0.0]
We focus on two realizations of non-Hermitian physics in mesoscopic systems.
First, we consider spiral optical microcavities in which the asymmetric scattering between whispering gallery modes induces the non-Hermitian behaviour.
Second, for parity-time (PT) symmetric ladder lattices we compare circular and M"obius geometries.
arXiv Detail & Related papers (2022-05-03T17:10:36Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Symmetry indicator in non-Hermitian systems [0.0]
We study a theory of symmetry indicators for non-Hermitian systems.
We list symmetry indicator groups for non-Hermitian systems in the presence of space group symmetries.
arXiv Detail & Related papers (2021-05-03T08:16:37Z) - Pseudo-chirality: a manifestation of Noether's theorem in non-Hermitian
systems [0.0]
We reveal previously unidentified constants of motion in non-Hermitian systems with parity-time and chiral symmetries.
We discuss previously unidentified symmetries of this non-Hermitian topological system, and we reveal how its constant of motion due to pseudo-chirality can be used as an indicator of whether a pure chiral edge state is excited.
arXiv Detail & Related papers (2021-01-22T17:51:15Z) - Non-Hermitian Floquet phases with even-integer topological invariants in
a periodically quenched two-leg ladder [0.0]
Periodically driven non-Hermitian systems could possess exotic nonequilibrium phases with unique topological, dynamical and transport properties.
We introduce an experimentally realizable two-leg ladder model subjecting to both time-periodic quenches and non-Hermitian effects.
Our work thus introduces a new type of non-Hermitian Floquet topological matter, and further reveals the richness of topology and dynamics in driven open systems.
arXiv Detail & Related papers (2020-06-16T03:22:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.