Quantum feedback for measurement and control
- URL: http://arxiv.org/abs/2004.09766v1
- Date: Tue, 21 Apr 2020 06:00:54 GMT
- Title: Quantum feedback for measurement and control
- Authors: Leigh S. Martin
- Abstract summary: Experimentally, we show that continuous measurement allows one to observe the dynamics of a system undergoing simultaneous non-commuting measurements.
We combine the theoretical focus on quantum feedback with the experimental capabilities of superconducting circuits to implement a feedback controlled quantum amplifier.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The standard quantum formalism introduced at the undergraduate level treats
measurement as an instantaneous collapse. In reality however, no physical
process can occur over a truly infinitesimal time interval. A more subtle
investigation of open quantum systems lead to the theory of continuous
measurement and quantum trajectories, in which wave function collapse occurs
over a finite time scale associated with an interaction. Within this formalism,
it becomes possible to ask many new questions that would be trivial or even
ill-defined in the context of the more basic measurement model. In this thesis,
we investigate both theoretically and experimentally what fundamentally new
capabilities arise when an experimental apparatus can resolve the continuous
dynamics of a measurement. Theoretically, we show that when one can perform
feedback operations on the timescale of the measurement process, the resulting
tools provide significantly more control over entanglement generation, and in
some settings can generate it optimally. We derive these results using a novel
formalism which encompasses most known quantum feedback protocols.
Experimentally, we show that continuous measurement allows one to observe the
dynamics of a system undergoing simultaneous non-commuting measurements, which
provides a reinterpretation of the Heisenberg uncertainty principle. Finally,
we combine the theoretical focus on quantum feedback with the experimental
capabilities of superconducting circuits to implement a feedback controlled
quantum amplifier. The resulting system is capable of adaptive measurement,
which we use to perform the first canonical phase measurement.
Related papers
- Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Quantum Back-action Limits in Dispersively Measured Bose-Einstein
Condensates [0.0]
We theoretically and experimentally characterize quantum back-action in atomic Bose-Einstein condensates interacting with a far-from resonant laser beam.
We experimentally quantify the resulting wavefunction change in terms of the contrast of a Ramsey interferometer.
This result is a necessary precursor for achieving true quantum back-action limited measurements of quantum gases.
arXiv Detail & Related papers (2022-09-09T17:04:36Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Constraints on probing quantum coherence to infer gravitational
entanglement [0.0]
Gravity mediated entanglement generation so far appears to be the key ingredient for a potential experiment.
With measurements performed only on the atoms, a coherence revival test is proposed for verifying this entanglement generation.
We explore formulations of such a protocol, and specifically find that in the envisioned regime of operation with high thermal excitation, semi-classical models, where there is no concept of entanglement, also give the same experimental signatures.
arXiv Detail & Related papers (2021-06-15T15:29:35Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Continuous measurements for control of superconducting quantum circuits [0.0]
We introduce the concept of quantum feedback in the context of circuit QED.
We discuss several experiments and see how they elucidate the concepts of continuous measurements and feedback.
We conclude with an overview of coherent feedback, with application to fault-tolerant error correction.
arXiv Detail & Related papers (2020-09-15T18:00:18Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.