Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light
- URL: http://arxiv.org/abs/2205.13089v2
- Date: Mon, 31 Oct 2022 11:47:30 GMT
- Title: Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light
- Authors: Marco Bellini, Hyukjoon Kwon, Nicola Biagi, Saverio Francesconi,
Alessandro Zavatta, M. S. Kim
- Abstract summary: We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
- Score: 58.8645797643406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The principle of microscopic reversibility lies at the core of fluctuation
theorems, which have extended our understanding of the second law of
thermodynamics to the statistical level. In the quantum regime, however, this
elementary principle should be amended as the system energy cannot be sharply
determined at a given quantum phase space point. In this Letter, we propose and
experimentally test a quantum generalization of the microscopic reversibility
when a quantum system interacts with a heat bath through energy-preserving
unitary dynamics. Quantum effects can be identified by noting that the backward
process is less likely to happen in the existence of quantum coherence between
the system's energy eigenstates. The experimental demonstration has been
realized by mixing coherent and thermal states in a beam-splitter, followed by
heterodyne detection in an optical setup. We verify that the quantum
modification for the principle of microscopic reversibility is critical in the
low-temperature limit, while the quantum-to-classical transition is observed as
the temperature of the thermal field gets higher.
Related papers
- Quantum thermalization of translation-invariant systems at high temperature [0.0]
Quantum thermalization describes how closed quantum systems can effectively reach thermal equilibrium.
Despite its ubiquity and conceptual significance, a complete proof of quantum thermalization has remained elusive for several decades.
We prove that quantum thermalization must occur in any qubit system with local interactions satisfying three conditions.
arXiv Detail & Related papers (2024-09-11T18:00:01Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Quantum bistability in the hyperfine ground state of atoms [0.0]
We show that atoms in an optical cavity can manifest a first-order dissipative phase transition.
These states include hyperfine ground states of atoms and coherent states of electromagnetic field modes.
arXiv Detail & Related papers (2023-03-03T12:42:50Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Quantifying quantum coherence in polariton condensates [0.23746609573239752]
We investigate quantum features of an interacting light-matter system from a multidisciplinary perspective.
We quantify the amount of quantum coherence that results from the quantum superposition of Fock states.
arXiv Detail & Related papers (2021-03-04T13:47:45Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantifying the quantum heat contribution from a driven superconducting
circuit [0.0]
We propose a two-reservoir setup to detect the quantum component in the heat flow exchanged by a coherently driven atom with its thermal environment.
tuning the driving parameters switches on and off the quantum and classical contributions to the heat flows, enabling their independent characterization.
arXiv Detail & Related papers (2020-01-28T14:38:32Z) - Heat flow and noncommutative quantum mechanics in phase-space [0.0]
We show that by controlling the new constants introduced in the quantum theory, due to a deformed Heisenberg-Weyl algebra, the heat flow from the hot to the cold system may be enhanced.
We also give a brief discussion on the robustness of the second law of thermodynamics in the context of noncommutative quantum mechanics.
arXiv Detail & Related papers (2019-12-26T15:28:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.