STDPG: A Spatio-Temporal Deterministic Policy Gradient Agent for Dynamic
Routing in SDN
- URL: http://arxiv.org/abs/2004.09783v1
- Date: Tue, 21 Apr 2020 07:19:07 GMT
- Title: STDPG: A Spatio-Temporal Deterministic Policy Gradient Agent for Dynamic
Routing in SDN
- Authors: Juan Chen, Zhiwen Xiao, Huanlai Xing, Penglin Dai, Shouxi Luo,
Muhammad Azhar Iqbal
- Abstract summary: Dynamic routing in software-defined networking (SDN) can be viewed as a centralized decision-making problem.
We propose a novel model-free framework for dynamic routing in SDN, which is referred to as SDN-temporal deterministic policy gradient (STDPG) agent.
STDPG achieves better routing solutions in terms of average end-to-end delay.
- Score: 6.27420060051673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic routing in software-defined networking (SDN) can be viewed as a
centralized decision-making problem. Most of the existing deep reinforcement
learning (DRL) agents can address it, thanks to the deep neural network
(DNN)incorporated. However, fully-connected feed-forward neural network (FFNN)
is usually adopted, where spatial correlation and temporal variation of traffic
flows are ignored. This drawback usually leads to significantly high
computational complexity due to large number of training parameters. To
overcome this problem, we propose a novel model-free framework for dynamic
routing in SDN, which is referred to as spatio-temporal deterministic policy
gradient (STDPG) agent. Both the actor and critic networks are based on
identical DNN structure, where a combination of convolutional neural network
(CNN) and long short-term memory network (LSTM) with temporal attention
mechanism, CNN-LSTM-TAM, is devised. By efficiently exploiting spatial and
temporal features, CNNLSTM-TAM helps the STDPG agent learn better from the
experience transitions. Furthermore, we employ the prioritized experience
replay (PER) method to accelerate the convergence of model training. The
experimental results show that STDPG can automatically adapt for current
network environment and achieve robust convergence. Compared with a number
state-ofthe-art DRL agents, STDPG achieves better routing solutions in terms of
the average end-to-end delay.
Related papers
- How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
Spiking neural networks (SNNs) are promising brain-inspired energy-efficient models.
Recent progress in training methods has enabled successful deep SNNs on large-scale tasks with low latency.
We propose online training through time (OTTT) for SNNs, which is derived from BPTT to enable forward-in-time learning.
arXiv Detail & Related papers (2022-10-09T07:47:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Spiking Generative Adversarial Networks With a Neural Network
Discriminator: Local Training, Bayesian Models, and Continual Meta-Learning [31.78005607111787]
Training neural networks to reproduce spiking patterns is a central problem in neuromorphic computing.
This work proposes to train SNNs so as to match spiking signals rather than individual spiking signals.
arXiv Detail & Related papers (2021-11-02T17:20:54Z) - An optimised deep spiking neural network architecture without gradients [7.183775638408429]
We present an end-to-end trainable modular event-driven neural architecture that uses local synaptic and threshold adaptation rules.
The architecture represents a highly abstracted model of existing Spiking Neural Network (SNN) architectures.
arXiv Detail & Related papers (2021-09-27T05:59:12Z) - Skip-Connected Self-Recurrent Spiking Neural Networks with Joint
Intrinsic Parameter and Synaptic Weight Training [14.992756670960008]
We propose a new type of RSNN called Skip-Connected Self-Recurrent SNNs (ScSr-SNNs)
ScSr-SNNs can boost performance by up to 2.55% compared with other types of RSNNs trained by state-of-the-art BP methods.
arXiv Detail & Related papers (2020-10-23T22:27:13Z) - SRDCNN: Strongly Regularized Deep Convolution Neural Network
Architecture for Time-series Sensor Signal Classification Tasks [4.950427992960756]
We present SRDCNN: Strongly Regularized Deep Convolution Neural Network (DCNN) based deep architecture to perform time series classification tasks.
The novelty of the proposed approach is that the network weights are regularized by both L1 and L2 norm penalties.
arXiv Detail & Related papers (2020-07-14T08:42:39Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.