論文の概要: A Deep Learning Approach for Motion Forecasting Using 4D OCT Data
- arxiv url: http://arxiv.org/abs/2004.10121v2
- Date: Mon, 1 Jun 2020 10:53:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 07:31:54.330674
- Title: A Deep Learning Approach for Motion Forecasting Using 4D OCT Data
- Title(参考訳): 4次元OCTデータを用いた動き予測のための深層学習手法
- Authors: Marcel Bengs and Nils Gessert and Alexander Schlaefer
- Abstract要約: 我々は,OCTボリュームのストリームを用いたエンド・ツー・エンド動作予測と推定のための4次元時間深度学習を提案する。
提案手法は,全体の平均相関97.41%の動作予測を実現するとともに,従来の3D手法と比較して2.5倍の動作推定性能を向上する。
- 参考スコア(独自算出の注目度): 69.62333053044712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting motion of a specific target object is a common problem for
surgical interventions, e.g. for localization of a target region, guidance for
surgical interventions, or motion compensation. Optical coherence tomography
(OCT) is an imaging modality with a high spatial and temporal resolution.
Recently, deep learning methods have shown promising performance for OCT-based
motion estimation based on two volumetric images. We extend this approach and
investigate whether using a time series of volumes enables motion forecasting.
We propose 4D spatio-temporal deep learning for end-to-end motion forecasting
and estimation using a stream of OCT volumes. We design and evaluate five
different 3D and 4D deep learning methods using a tissue data set. Our best
performing 4D method achieves motion forecasting with an overall average
correlation coefficient of 97.41%, while also improving motion estimation
performance by a factor of 2.5 compared to a previous 3D approach.
- Abstract(参考訳): 特定の対象物の運動を予測することは、対象領域の局在化、手術介入のガイダンス、運動補償など、外科的介入において一般的な問題である。
光コヒーレンストモグラフィー(OCT)は空間分解能と時間分解能の高い画像モダリティである。
近年,2つのボリューム画像に基づくOCTに基づく動き推定において,深層学習が有望な性能を示した。
このアプローチを拡張し、時系列のボリュームを使用することで動きの予測が可能かどうかを調べる。
エンドツーエンド動作予測と推定のための4次元時空間深層学習法を提案する。
組織データセットを用いた5種類の3次元および4次元深層学習法を設計・評価した。
提案手法は, 平均相関係数97.41%の動作予測を実現するとともに, 従来の3次元手法に比べて2.5倍の動作推定性能向上を実現する。
関連論文リスト
- ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
既存の手法は、これらのタスクの要求に応えるために高い精度を優先する。
本稿では,3次元セマンティック占有率予測とフロー推定のための一連の改善点を紹介する。
私たちの純粋な時間的アーキテクチャフレームワークであるALOccは、速度と精度の最適なトレードオフを実現しています。
論文 参考訳(メタデータ) (2024-11-12T11:32:56Z) - Unsupervised Landmark Detection Based Spatiotemporal Motion Estimation
for 4D Dynamic Medical Images [16.759486905827433]
2段階からなるDense-Sparse-Dense (DSD) の新たな動き推定フレームワークを提案する。
第1段階では, 対象臓器解剖学的トポロジーを表すために, 粗いランドマークを抽出するために, 生の高密度画像を処理する。
第2段階では、異なる時間点の2つの画像の抽出されたスパースランドマークからスパース運動変位を導出する。
論文 参考訳(メタデータ) (2021-09-30T02:06:02Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3次元畳み込みニューラルネットワーク(CNN)は、単一のOCT画像を用いたマーカーオブジェクトのポーズ推定に有望な性能を示した。
我々は3次元CNNを4次元時間CNNに拡張し、マーカーオブジェクト追跡のための追加の時間情報の影響を評価する。
論文 参考訳(メタデータ) (2020-07-02T12:02:20Z) - Deep learning with 4D spatio-temporal data representations for OCT-based
force estimation [59.405210617831656]
深層学習に基づく力推定の問題を,3D OCTボリュームのストリームを用いた4次元体積時間データに拡張する。
平均絶対誤差は10.7mNで, 4Dterm-temporalデータを用いた場合, 従来使用されていたデータ表現よりも優れていた。
論文 参考訳(メタデータ) (2020-05-20T13:30:36Z) - Spatio-Temporal Deep Learning Methods for Motion Estimation Using 4D OCT
Image Data [63.73263986460191]
特定の対象領域の局所化と運動の推定は、外科的介入の際のナビゲーションの一般的な問題である。
OCT画像ボリュームの時間的ストリームを用いることで、深層学習に基づく動き推定性能が向上するかどうかを検討する。
モデル入力に4D情報を使用すると、合理的な推論時間を維持しながら性能が向上する。
論文 参考訳(メタデータ) (2020-04-21T15:43:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。