論文の概要: Knowing what you know: valid and validated confidence sets in multiclass
and multilabel prediction
- arxiv url: http://arxiv.org/abs/2004.10181v3
- Date: Fri, 10 Jul 2020 18:22:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 06:29:23.623461
- Title: Knowing what you know: valid and validated confidence sets in multiclass
and multilabel prediction
- Title(参考訳): 知っていることを知る:マルチクラスおよびマルチラベル予測における検証された信頼セット
- Authors: Maxime Cauchois and Suyash Gupta and John Duchi
- Abstract要約: マルチクラスおよびマルチラベル問題において、有効な信頼セットを構築するための共形予測手法を開発する。
量子レグレッションのアイデアを活用することで、常に正しいカバレッジを保証すると同時に、マルチクラスとマルチラベルの予測問題に対して条件付きカバレッジを提供する手法を構築する。
- 参考スコア(独自算出の注目度): 0.8594140167290097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop conformal prediction methods for constructing valid predictive
confidence sets in multiclass and multilabel problems without assumptions on
the data generating distribution. A challenge here is that typical conformal
prediction methods---which give marginal validity (coverage)
guarantees---provide uneven coverage, in that they address easy examples at the
expense of essentially ignoring difficult examples. By leveraging ideas from
quantile regression, we build methods that always guarantee correct coverage
but additionally provide (asymptotically optimal) conditional coverage for both
multiclass and multilabel prediction problems. To address the potential
challenge of exponentially large confidence sets in multilabel prediction, we
build tree-structured classifiers that efficiently account for interactions
between labels. Our methods can be bolted on top of any classification
model---neural network, random forest, boosted tree---to guarantee its
validity. We also provide an empirical evaluation, simultaneously providing new
validation methods, that suggests the more robust coverage of our confidence
sets.
- Abstract(参考訳): 我々は,データ生成分布の仮定を伴わずに,多クラスおよび多ラベル問題において有効な予測信頼セットを構築するための共形予測手法を開発した。
ここでの課題は、典型的な共形予測 - 限界妥当性(被覆)の保証を与える - が不均一なカバレッジを提供し、難しい例を無視して簡単な例に対処することだ。
量子回帰からアイデアを活用することで、常に正しいカバレッジを保証するが、マルチクラスとマルチラベルの予測問題に対して(漸近的に最適な)条件付きカバレッジを提供する手法を構築する。
マルチラベル予測における指数関数的に大きな信頼セットの潜在的な課題に対処するために,ラベル間の相互作用を効率的に考慮した木構造分類器を構築した。
本手法は,どの分類モデルにも適用可能である。ニューラルネットワーク,ランダムフォレスト,ブーストツリーなど,その妥当性を保証する。
また、信頼性セットのより堅牢なカバレッジを示唆する新しい検証手法を同時に提供する経験的評価も提供します。
関連論文リスト
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection Bias [5.698050337128548]
半教師付き学習において、自己学習はよく知られたアプローチである。モデルが自信を持ってラベル付きデータに擬似ラベルを反復的に割り当て、ラベル付き例として扱う。
ニューラルネットワークの場合、ソフトマックス予測確率はしばしば信頼度尺度として使用されるが、誤った予測であっても過度に信頼されていることが知られている。
本稿では,線形分類器のアンサンブルの予測多様性に基づいて,$mathcalT$-similarityと呼ばれる新しい信頼度尺度を提案する。
論文 参考訳(メタデータ) (2023-10-23T11:30:06Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
カスケードは、推論コストをサンプル毎に適応的に変化させる古典的な戦略である。
deferralルールは、シーケンス内の次の分類子を呼び出すか、または予測を終了するかを決定する。
カスケードの構造に執着しているにもかかわらず、信頼に基づく推論は実際は極めてうまく機能することが多い。
論文 参考訳(メタデータ) (2023-07-06T04:13:57Z) - Birds of a Feather Trust Together: Knowing When to Trust a Classifier
via Adaptive Neighborhood Aggregation [30.34223543030105]
我々は、NeighborAggがアダプティブ近隣アグリゲーションを介して2つの重要な情報を利用する方法を示す。
また, 誤り検出の密接な関連課題へのアプローチを拡張し, 偽陰性境界に対する理論的カバレッジを保証する。
論文 参考訳(メタデータ) (2022-11-29T18:43:15Z) - Prediction Sets Adaptive to Unknown Covariate Shift [18.105704797438417]
有限サンプル被覆保証付き予測集合は非形式的であることを示す。
そこで我々は,予測セットを効率的に構築する,新しいフレキシブルな分散フリー手法PredSet-1Stepを提案する。
論文 参考訳(メタデータ) (2022-03-11T17:53:14Z) - Predictive Inference with Weak Supervision [3.1925030748447747]
コンフォメーション予測フレームワークを開発することにより,部分監督と検証のギャップを埋める。
我々は、新しいカバレッジと予測妥当性の概念を導入し、いくつかのアプリケーションシナリオを開発します。
我々は、新しいカバレッジ定義がより厳密で情報的な(しかし有効な)信頼セットを可能にするという仮説を裏付ける。
論文 参考訳(メタデータ) (2022-01-20T17:26:52Z) - Certifying Confidence via Randomized Smoothing [151.67113334248464]
ランダムな平滑化は、高次元の分類問題に対して良好な証明されたロバスト性を保証することが示されている。
ほとんどの平滑化法は、下層の分類器が予測する信頼性に関する情報を与えてくれない。
そこで本研究では,スムーズな分類器の予測信頼度を評価するために,認証ラジイを生成する手法を提案する。
論文 参考訳(メタデータ) (2020-09-17T04:37:26Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。