Sequential Anomaly Detection using Inverse Reinforcement Learning
- URL: http://arxiv.org/abs/2004.10398v1
- Date: Wed, 22 Apr 2020 05:17:36 GMT
- Title: Sequential Anomaly Detection using Inverse Reinforcement Learning
- Authors: Min-hwan Oh, Garud Iyengar
- Abstract summary: We propose an end-to-end framework for sequential anomaly detection using inverse reinforcement learning (IRL)
We use a neural network to represent a reward function. Using a learned reward function, we evaluate whether a new observation from the target agent follows a normal pattern.
The empirical study on publicly available real-world data shows that our proposed method is effective in identifying anomalies.
- Score: 23.554584457413483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the most interesting application scenarios in anomaly detection is
when sequential data are targeted. For example, in a safety-critical
environment, it is crucial to have an automatic detection system to screen the
streaming data gathered by monitoring sensors and to report abnormal
observations if detected in real-time. Oftentimes, stakes are much higher when
these potential anomalies are intentional or goal-oriented. We propose an
end-to-end framework for sequential anomaly detection using inverse
reinforcement learning (IRL), whose objective is to determine the
decision-making agent's underlying function which triggers his/her behavior.
The proposed method takes the sequence of actions of a target agent (and
possibly other meta information) as input. The agent's normal behavior is then
understood by the reward function which is inferred via IRL. We use a neural
network to represent a reward function. Using a learned reward function, we
evaluate whether a new observation from the target agent follows a normal
pattern. In order to construct a reliable anomaly detection method and take
into consideration the confidence of the predicted anomaly score, we adopt a
Bayesian approach for IRL. The empirical study on publicly available real-world
data shows that our proposed method is effective in identifying anomalies.
Related papers
- Pattern-Based Time-Series Risk Scoring for Anomaly Detection and Alert Filtering -- A Predictive Maintenance Case Study [3.508168174653255]
We propose a fast and efficient approach to anomaly detection and alert filtering based on sequential pattern similarities.
We show how this approach can be leveraged for a variety of purposes involving anomaly detection on a large scale real-world industrial system.
arXiv Detail & Related papers (2024-05-24T20:27:45Z) - Adaptive Thresholding Heuristic for KPI Anomaly Detection [1.57731592348751]
A plethora of outlier detectors have been explored in the time series domain, however, in a business sense, not all outliers are anomalies of interest.
This article proposes an Adaptive Thresholding Heuristic (ATH) to dynamically adjust the detection threshold based on the local properties of the data distribution and adapt to changes in time series patterns.
Experimental results show that ATH is efficient making it scalable for near real time anomaly detection and flexible with forecasters and outlier detectors.
arXiv Detail & Related papers (2023-08-21T06:45:28Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Using a Neural Network to Detect Anomalies given an N-gram Profile [0.0]
Anomaly detection is designed to profile the normal runtime behavior of computer programs.
Normal but unobserved behavior can trigger false positives.
This paper presents our study on how to explain the presence of anomalies using a neural network.
arXiv Detail & Related papers (2021-04-12T15:40:43Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
Convolutional Neural Network (CNN) techniques have proven to be very useful in image-based anomaly detection applications.
We introduce a transfer learning framework for anomaly detection based on similarity measure with a Model of Normality (MoN)
We show that with the proposed threshold settings, a significant performance improvement can be achieved.
arXiv Detail & Related papers (2020-11-12T05:26:32Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z) - $\text{A}^3$: Activation Anomaly Analysis [0.7734726150561088]
We show that the hidden activation values contain information useful to distinguish between normal and anomalous samples.
Our approach combines three neural networks in a purely data-driven end-to-end model.
Thanks to the anomaly network, our method even works in strict semi-supervised settings.
arXiv Detail & Related papers (2020-03-03T21:23:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.