Pattern-Based Time-Series Risk Scoring for Anomaly Detection and Alert Filtering -- A Predictive Maintenance Case Study
- URL: http://arxiv.org/abs/2405.17488v1
- Date: Fri, 24 May 2024 20:27:45 GMT
- Title: Pattern-Based Time-Series Risk Scoring for Anomaly Detection and Alert Filtering -- A Predictive Maintenance Case Study
- Authors: Elad Liebman,
- Abstract summary: We propose a fast and efficient approach to anomaly detection and alert filtering based on sequential pattern similarities.
We show how this approach can be leveraged for a variety of purposes involving anomaly detection on a large scale real-world industrial system.
- Score: 3.508168174653255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fault detection is a key challenge in the management of complex systems. In the context of SparkCognition's efforts towards predictive maintenance in large scale industrial systems, this problem is often framed in terms of anomaly detection - identifying patterns of behavior in the data which deviate from normal. Patterns of normal behavior aren't captured simply in the coarse statistics of measured signals. Rather, the multivariate sequential pattern itself can be indicative of normal vs. abnormal behavior. For this reason, normal behavior modeling that relies on snapshots of the data without taking into account temporal relationships as they evolve would be lacking. However, common strategies for dealing with temporal dependence, such as Recurrent Neural Networks or attention mechanisms are oftentimes computationally expensive and difficult to train. In this paper, we propose a fast and efficient approach to anomaly detection and alert filtering based on sequential pattern similarities. In our empirical analysis section, we show how this approach can be leveraged for a variety of purposes involving anomaly detection on a large scale real-world industrial system. Subsequently, we test our approach on a publicly-available dataset in order to establish its general applicability and robustness compared to a state-of-the-art baseline. We also demonstrate an efficient way of optimizing the framework based on an alert recall objective function.
Related papers
- MIXAD: Memory-Induced Explainable Time Series Anomaly Detection [21.208134038200203]
We introduce MIXAD (Memory Explainable Time Series Atemporally Detection), a model designed for interpretable anomaly detection.
We also introduce a novel anomaly scoring method that detects significant shifts in memory activation patterns during anomalies.
Our approach not only ensures decent detection performance but also outperforms state-of-the-art baselines by 34.30% and 34.51% in interpretability metrics.
arXiv Detail & Related papers (2024-10-30T06:46:23Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
We introduce a combination of data augmentation and soft contrastive learning, specifically designed to capture the multifaceted nature of state behaviors more accurately.
This dual strategy significantly boosts the model's ability to distinguish between normal and abnormal states, leading to a marked improvement in fault detection performance across multiple datasets and settings.
arXiv Detail & Related papers (2024-05-25T14:48:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Time-series Anomaly Detection via Contextual Discriminative Contrastive
Learning [0.0]
One-class classification methods are commonly used for anomaly detection tasks.
We propose a novel approach inspired by the loss function of DeepSVDD.
We combine our approach with a deterministic contrastive loss from Neutral AD, a promising self-supervised learning anomaly detection approach.
arXiv Detail & Related papers (2023-04-16T21:36:19Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Lossy Compression for Robust Unsupervised Time-Series Anomaly Detection [4.873362301533825]
We propose a Lossy Causal Temporal Convolutional Neural Network Autoencoder for anomaly detection.
Our framework uses a rate-distortion loss and an entropy bottleneck to learn a compressed latent representation for the task.
arXiv Detail & Related papers (2022-12-05T14:29:16Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Smart Meter Data Anomaly Detection using Variational Recurrent
Autoencoders with Attention [0.0]
This paper proposes an unsupervised anomaly detection method based on a Variational Recurrent Autoencoder with attention mechanism.
With "dirty" data from smart meters, our method pre-detects missing values and global anomalies to shrink their contribution while training.
arXiv Detail & Related papers (2022-06-08T19:39:51Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.