DeepFake Detection by Analyzing Convolutional Traces
- URL: http://arxiv.org/abs/2004.10448v1
- Date: Wed, 22 Apr 2020 09:02:55 GMT
- Title: DeepFake Detection by Analyzing Convolutional Traces
- Authors: Luca Guarnera (1 and 2), Oliver Giudice (1), Sebastiano Battiato (1
and 2) ((1) University of Catania, (2) iCTLab s.r.l. - Spin-off of University
of Catania)
- Abstract summary: We focus on the analysis of Deepfakes of human faces with the objective of creating a new detection method.
The proposed technique, by means of an Expectation Maximization (EM) algorithm, extracts a set of local features specifically addressed to model the underlying convolutional generative process.
Results demonstrated the effectiveness of the technique in distinguishing the different architectures and the corresponding generation process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Deepfake phenomenon has become very popular nowadays thanks to the
possibility to create incredibly realistic images using deep learning tools,
based mainly on ad-hoc Generative Adversarial Networks (GAN). In this work we
focus on the analysis of Deepfakes of human faces with the objective of
creating a new detection method able to detect a forensics trace hidden in
images: a sort of fingerprint left in the image generation process. The
proposed technique, by means of an Expectation Maximization (EM) algorithm,
extracts a set of local features specifically addressed to model the underlying
convolutional generative process. Ad-hoc validation has been employed through
experimental tests with naive classifiers on five different architectures
(GDWCT, STARGAN, ATTGAN, STYLEGAN, STYLEGAN2) against the CELEBA dataset as
ground-truth for non-fakes. Results demonstrated the effectiveness of the
technique in distinguishing the different architectures and the corresponding
generation process.
Related papers
- Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - FSBI: Deepfakes Detection with Frequency Enhanced Self-Blended Images [17.707379977847026]
This paper introduces a Frequency Enhanced Self-Blended Images approach for deepfakes detection.
The proposed approach has been evaluated on FF++ and Celeb-DF datasets.
arXiv Detail & Related papers (2024-06-12T20:15:00Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
We introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations.
A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by tft28 distinct generative models.
This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable tft11.6% improvement over existing methods.
arXiv Detail & Related papers (2023-12-16T14:27:06Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - LatentForensics: Towards frugal deepfake detection in the StyleGAN latent space [2.629091178090276]
We propose a deepfake detection method that operates in the latent space of a state-of-the-art generative adversarial network (GAN) trained on high-quality face images.
Experimental results on standard datasets reveal that the proposed approach outperforms other state-of-the-art deepfake classification methods.
arXiv Detail & Related papers (2023-03-30T08:36:48Z) - Fighting deepfakes by detecting GAN DCT anomalies [0.0]
State-of-the-art algorithms employ deep neural networks to detect fake contents.
A new fast detection method able to discriminate Deepfake images with high precision is proposed.
The method is innovative, exceeds the state-of-the-art and also gives many insights in terms of explainability.
arXiv Detail & Related papers (2021-01-24T19:45:11Z) - Fighting Deepfake by Exposing the Convolutional Traces on Images [0.0]
Mobile apps like FACEAPP make use of the most advanced Generative Adversarial Networks (GAN) to produce extreme transformations on human face photos.
This kind of media object took the name of Deepfake and raised a new challenge in the multimedia forensics field: the Deepfake detection challenge.
In this paper, a new approach aimed to extract a Deepfake fingerprint from images is proposed.
arXiv Detail & Related papers (2020-08-07T08:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.