FSBI: Deepfakes Detection with Frequency Enhanced Self-Blended Images
- URL: http://arxiv.org/abs/2406.08625v2
- Date: Tue, 25 Jun 2024 13:12:20 GMT
- Title: FSBI: Deepfakes Detection with Frequency Enhanced Self-Blended Images
- Authors: Ahmed Abul Hasanaath, Hamzah Luqman, Raed Katib, Saeed Anwar,
- Abstract summary: This paper introduces a Frequency Enhanced Self-Blended Images approach for deepfakes detection.
The proposed approach has been evaluated on FF++ and Celeb-DF datasets.
- Score: 17.707379977847026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in deepfake research have led to the creation of almost perfect manipulations undetectable by human eyes and some deepfakes detection tools. Recently, several techniques have been proposed to differentiate deepfakes from realistic images and videos. This paper introduces a Frequency Enhanced Self-Blended Images (FSBI) approach for deepfakes detection. This proposed approach utilizes Discrete Wavelet Transforms (DWT) to extract discriminative features from the self-blended images (SBI) to be used for training a convolutional network architecture model. The SBIs blend the image with itself by introducing several forgery artifacts in a copy of the image before blending it. This prevents the classifier from overfitting specific artifacts by learning more generic representations. These blended images are then fed into the frequency features extractor to detect artifacts that can not be detected easily in the time domain. The proposed approach has been evaluated on FF++ and Celeb-DF datasets and the obtained results outperformed the state-of-the-art techniques with the cross-dataset evaluation protocol.
Related papers
- Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
We introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations.
A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by tft28 distinct generative models.
This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable tft11.6% improvement over existing methods.
arXiv Detail & Related papers (2023-12-16T14:27:06Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - Detecting Deepfakes with Self-Blended Images [37.374772758057844]
We present novel synthetic training data called self-blended images ( SBIs) to detect deepfakes.
SBIs are generated by blending pseudo source and target images from single pristine images.
We compare our approach with state-of-the-art methods on FF++, CDF, DFD, DFDC, DFDCP, and FFIW datasets.
arXiv Detail & Related papers (2022-04-18T15:44:35Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - Fake-image detection with Robust Hashing [0.0]
We investigate whether robust hashing has a possibility to robustly detect fake-images even when multiple manipulation techniques are applied to images for the first time.
In an experiment, the proposed fake detection with robust hashing is demonstrated to outperform state-of-the-art one under the use of various datasets including fake images generated with GANs.
arXiv Detail & Related papers (2021-02-02T05:10:37Z) - Identifying Invariant Texture Violation for Robust Deepfake Detection [17.306386179823576]
We propose the Invariant Texture Learning framework, which only accesses the published dataset with low visual quality.
Our method is based on the prior that the microscopic facial texture of the source face is inevitably violated by the texture transferred from the target person.
arXiv Detail & Related papers (2020-12-19T03:02:15Z) - DeepFake Detection by Analyzing Convolutional Traces [0.0]
We focus on the analysis of Deepfakes of human faces with the objective of creating a new detection method.
The proposed technique, by means of an Expectation Maximization (EM) algorithm, extracts a set of local features specifically addressed to model the underlying convolutional generative process.
Results demonstrated the effectiveness of the technique in distinguishing the different architectures and the corresponding generation process.
arXiv Detail & Related papers (2020-04-22T09:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.