論文の概要: Learning Sampling and Model-Based Signal Recovery for Compressed Sensing
MRI
- arxiv url: http://arxiv.org/abs/2004.10536v1
- Date: Wed, 22 Apr 2020 12:50:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 17:47:46.844604
- Title: Learning Sampling and Model-Based Signal Recovery for Compressed Sensing
MRI
- Title(参考訳): 圧縮センシングMRIのための学習サンプリングとモデルに基づく信号回復
- Authors: Iris A.M. Huijben, Bastiaan S. Veeling, and Ruud J.G. van Sloun
- Abstract要約: 圧縮センシング(CS)MRIは、画像品質を損なうことなく、取得を加速するためにk空間の適切なアンサンプに依存する。
タスク適応型k空間サンプリングとそれに続くモデルベース近位回復ネットワークの併用学習を提案する。
高いフレキシブルサンプリングモデルとモデルベース(サンプル適応型)画像再構成ネットワークの組み合わせにより、探索と効率的なトレーニングが容易になり、MR画像の品質が向上した。
- 参考スコア(独自算出の注目度): 30.838990115880197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compressed sensing (CS) MRI relies on adequate undersampling of the k-space
to accelerate the acquisition without compromising image quality. Consequently,
the design of optimal sampling patterns for these k-space coefficients has
received significant attention, with many CS MRI methods exploiting
variable-density probability distributions. Realizing that an optimal sampling
pattern may depend on the downstream task (e.g. image reconstruction,
segmentation, or classification), we here propose joint learning of both
task-adaptive k-space sampling and a subsequent model-based proximal-gradient
recovery network. The former is enabled through a probabilistic generative
model that leverages the Gumbel-softmax relaxation to sample across trainable
beliefs while maintaining differentiability. The proposed combination of a
highly flexible sampling model and a model-based (sampling-adaptive) image
reconstruction network facilitates exploration and efficient training, yielding
improved MR image quality compared to other sampling baselines.
- Abstract(参考訳): 圧縮センシング(CS)MRIは、画像品質を損なうことなく、取得を加速するためにk空間の適切なアンサンプに依存する。
その結果、これらのk空間係数に対する最適サンプリングパターンの設計に大きな注目を集め、多くのCSMRI法が変数密度確率分布を利用している。
最適なサンプリングパターンが下流タスク(例えば、画像再構成、セグメンテーション、分類)に依存することを認識し、タスク適応型k空間サンプリングとその後のモデルベース近勾配回復ネットワークの併用学習を提案する。
前者は、Gumbel-softmax緩和を利用した確率的生成モデルによって、訓練可能な信念をまたいで、微分可能性を維持しながらサンプリングすることができる。
提案する高フレキシブルサンプリングモデルとモデルベース(サンプリング適応型)画像再構成ネットワークの組み合わせにより,探索と効率的なトレーニングが容易になり,他のサンプリングベースラインと比較してmr画像品質が向上する。
関連論文リスト
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
ディープニューラルネットワークは、アンダーサンプル計測から高忠実度画像を再構成する大きな可能性を示している。
我々のモデルは、離散化に依存しないアーキテクチャであるニューラル演算子に基づいている。
我々の推論速度は拡散法よりも1,400倍速い。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - NeRF Solves Undersampled MRI Reconstruction [1.3597551064547502]
本稿では,Neural Radiance Field(NeRF)の概念を利用したMRI技術について述べる。
ラジアルアンダーサンプリングにより、対応する撮像問題をスパースビューレンダリングデータから画像モデリングタスクに再構成することができる。
空間座標から画像強度を出力する多層パーセプトロンは、所定の測定データと所望の画像との間のMR物理駆動レンダリング関係を学習する。
論文 参考訳(メタデータ) (2024-02-20T18:37:42Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Universal Generative Modeling in Dual-domain for Dynamic MR Imaging [22.915796840971396]
我々は,高度にアンダーサンプリングされた測定値の再構成を行うために,k-spaceとDu-al-Domainコラボレーティブユニバーサル生成モデル(DD-UGM)を提案する。
より正確には、画像領域とk空間領域の両方の先行成分を普遍的な生成モデルで抽出し、これらの先行成分を適応的に処理し、より高速に処理する。
論文 参考訳(メタデータ) (2022-12-15T03:04:48Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - PUERT: Probabilistic Under-sampling and Explicable Reconstruction
Network for CS-MRI [47.24613772568027]
圧縮センシングMRI(Compressed Sensing MRI)は,k空間データをサンプリングし,MRI画像の高速化を目的とする。
本稿では,サンプリングパターンと再構成ネットワークを協調的に最適化するために,PUERTと呼ばれる新しいエンドツーエンドの確率的アンダーサンプリングと明示的再構成neTworkを提案する。
2つの広く利用されているMRIデータセットの実験により、提案したPUERTは、定量的な測定値と視覚的品質の両方の観点から、最先端の結果が得られることを示した。
論文 参考訳(メタデータ) (2022-04-24T04:23:57Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Fast T2w/FLAIR MRI Acquisition by Optimal Sampling of Information
Complementary to Pre-acquired T1w MRI [52.656075914042155]
本稿では,MRIによる他のモダリティ獲得のためのアンダーサンプリングパターンを最適化するための反復的フレームワークを提案する。
公開データセット上で学習したアンダーサンプリングパターンの優れた性能を実証した。
論文 参考訳(メタデータ) (2021-11-11T04:04:48Z) - 1D Probabilistic Undersampling Pattern Optimization for MR Image
Reconstruction [3.46218629010647]
本稿では,MR画像再構成のためのクロスドメインネットワークを,限られたサンプリングレートで,振り返りデータ駆動方式で提案する。
本手法は,学習データの種類に合わせて最適なアンダーサンプリングパターン(k空間)と再構成モデルを同時に得ることができる。
論文 参考訳(メタデータ) (2020-03-08T15:15:37Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM)アルゴリズムは、形態的再構成操作とタイトウェーブレットフレーム変換を組み込んでいる。
特徴集合とその理想値の間の残差に対して$ell_0$正規化項を付与することにより、改良されたFCMアルゴリズムを提案する。
合成, 医用, カラー画像に対する実験結果から, 提案アルゴリズムは効率的かつ効率的であり, 他のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-14T10:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。