論文の概要: Contextualised Graph Attention for Improved Relation Extraction
- arxiv url: http://arxiv.org/abs/2004.10624v1
- Date: Wed, 22 Apr 2020 15:04:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 18:31:41.994293
- Title: Contextualised Graph Attention for Improved Relation Extraction
- Title(参考訳): 関係抽出改善のための文脈付きグラフ注意
- Authors: Angrosh Mandya, Danushka Bollegala and Frans Coenen
- Abstract要約: グラフベースのネットワークにおいて,複数のサブグラフを用いてリッチノード表現を学習する手法が提案されている。
GATモデルとGCNモデルとを効果的に組み合わせて関係抽出に適用する2種類のエッジ特徴を提案する。
提案したモデルは、Semeval 2010 Task 8データセット上で最先端のパフォーマンスを達成し、F1スコア86.3を達成する。
- 参考スコア(独自算出の注目度): 18.435408046826048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a contextualized graph attention network that combines
edge features and multiple sub-graphs for improving relation extraction. A
novel method is proposed to use multiple sub-graphs to learn rich node
representations in graph-based networks. To this end multiple sub-graphs are
obtained from a single dependency tree. Two types of edge features are
proposed, which are effectively combined with GAT and GCN models to apply for
relation extraction. The proposed model achieves state-of-the-art performance
on Semeval 2010 Task 8 dataset, achieving an F1-score of 86.3.
- Abstract(参考訳): 本稿では,エッジ特徴と複数のサブグラフを組み合わせたコンテキスト化グラフアテンションネットワークを提案する。
グラフベースのネットワークにおいて,複数のサブグラフを用いてリッチノード表現を学習する手法を提案する。
これにより、単一の依存木から複数のサブグラフを得る。
GATモデルとGCNモデルとを効果的に組み合わせて関係抽出に適用する2種類のエッジ特徴を提案する。
提案したモデルは、Semeval 2010 Task 8データセットで最先端のパフォーマンスを実現し、F1スコア86.3を達成する。
関連論文リスト
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
解析条件後部を解析し,推論精度を向上させるグラフポアソン因子分析法(GPFA)を開発した。
また,GPFAを多層構造に拡張したグラフPoisson gamma belief Network (GPGBN) を用いて,階層的な文書関係を複数の意味レベルで捉える。
本モデルでは,高品質な階層型文書表現を抽出し,様々なグラフ解析タスクにおいて有望な性能を実現する。
論文 参考訳(メタデータ) (2024-10-13T02:22:14Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Graph Convolutional Networks with Dual Message Passing for Subgraph
Isomorphism Counting and Matching [42.55928561326902]
グラフニューラルネットワーク(GNN)とメッセージパッシングニューラルネットワーク(MPNN)は、サブグラフ構造に対して表現可能であることが証明されている。
サブストラクチャ表現学習を強化するために,デュアルメッセージパッシングニューラルネットワーク(DMPNN)を提案する。
論文 参考訳(メタデータ) (2021-12-16T10:23:48Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - SPAN: Subgraph Prediction Attention Network for Dynamic Graphs [8.601023852899166]
本稿では,動的グラフのサブグラフ予測のための新しいモデルを提案する。
現在のスナップショットにあるサブグラフ構造から、次のスナップショットにあるサブグラフ構造へのマッピングを直接学習する。
実験の結果,この2つのタスクにおいて,モデルが他のモデルより優れており,5.02%から10.88%に向上していることがわかった。
論文 参考訳(メタデータ) (2021-08-17T17:29:52Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
本稿では,その構造的依存関係に応じてノード間の相互作用をキャプチャするグラフマルチセットトランス (GMT) を提案する。
実験の結果,GMTはグラフ分類ベンチマークにおいて,最先端のグラフプーリング法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-23T07:45:58Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
逐次グラフ畳み込みネットワーク(GCN)を用いた新しいプールベースアクティブラーニングフレームワークを提案する。
少数のランダムなサンプル画像がシードラベル付き例であるので、グラフのパラメータを学習してラベル付きノードと非ラベル付きノードを区別する。
我々はGCNの特性を利用してラベル付けされたものと十分に異なる未ラベルの例を選択する。
論文 参考訳(メタデータ) (2020-06-18T00:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。