CodNN -- Robust Neural Networks From Coded Classification
- URL: http://arxiv.org/abs/2004.10700v2
- Date: Wed, 29 Apr 2020 22:55:41 GMT
- Title: CodNN -- Robust Neural Networks From Coded Classification
- Authors: Netanel Raviv, Siddharth Jain, Pulakesh Upadhyaya, Jehoshua Bruck, and
Anxiao Jiang
- Abstract summary: Deep Neural Networks (DNNs) are a revolutionary force in the ongoing information revolution.
DNNs are highly sensitive to noise, whether adversarial or random.
This poses a fundamental challenge for hardware implementations of DNNs, and for their deployment in critical applications such as autonomous driving.
By our approach, either the data or internal layers of the DNN are coded with error correcting codes, and successful computation under noise is guaranteed.
- Score: 27.38642191854458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) are a revolutionary force in the ongoing
information revolution, and yet their intrinsic properties remain a mystery. In
particular, it is widely known that DNNs are highly sensitive to noise, whether
adversarial or random. This poses a fundamental challenge for hardware
implementations of DNNs, and for their deployment in critical applications such
as autonomous driving. In this paper we construct robust DNNs via error
correcting codes. By our approach, either the data or internal layers of the
DNN are coded with error correcting codes, and successful computation under
noise is guaranteed. Since DNNs can be seen as a layered concatenation of
classification tasks, our research begins with the core task of classifying
noisy coded inputs, and progresses towards robust DNNs. We focus on binary data
and linear codes. Our main result is that the prevalent parity code can
guarantee robustness for a large family of DNNs, which includes the recently
popularized binarized neural networks. Further, we show that the coded
classification problem has a deep connection to Fourier analysis of Boolean
functions. In contrast to existing solutions in the literature, our results do
not rely on altering the training process of the DNN, and provide
mathematically rigorous guarantees rather than experimental evidence.
Related papers
- RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
Spiking Neural Networks (SNNs) have received widespread attention due to their unique neuronal dynamics and low-power nature.
Previous research empirically shows that SNNs with Poisson coding are more robust than Artificial Neural Networks (ANNs) on small-scale datasets.
This work theoretically demonstrates that SNN's inherent adversarial robustness stems from its Poisson coding.
arXiv Detail & Related papers (2024-07-29T15:26:15Z) - Harnessing Neuron Stability to Improve DNN Verification [42.65507402735545]
We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
arXiv Detail & Related papers (2024-01-19T23:48:04Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - Spiking Neural Network Decision Feedback Equalization [70.3497683558609]
We propose an SNN-based equalizer with a feedback structure akin to the decision feedback equalizer (DFE)
We show that our approach clearly outperforms conventional linear equalizers for three different exemplary channels.
The proposed SNN with a decision feedback structure enables the path to competitive energy-efficient transceivers.
arXiv Detail & Related papers (2022-11-09T09:19:15Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Pruning and Slicing Neural Networks using Formal Verification [0.2538209532048866]
Deep neural networks (DNNs) play an increasingly important role in various computer systems.
In order to create these networks, engineers typically specify a desired topology, and then use an automated training algorithm to select the network's weights.
Here, we propose to address this challenge by harnessing recent advances in DNN verification.
arXiv Detail & Related papers (2021-05-28T07:53:50Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
We study neural-linear bandits for solving problems where both exploration and representation learning play an important role.
We propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online.
arXiv Detail & Related papers (2021-02-07T14:19:07Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - An Efficient Spiking Neural Network for Recognizing Gestures with a DVS
Camera on the Loihi Neuromorphic Processor [12.118084418840152]
Spiking Neural Networks (SNNs) have come under the spotlight for machine learning based applications.
We show our methodology for the design of an SNN that achieves nearly the same accuracy results as its corresponding Deep Neural Networks (DNNs)
Our SNN achieves 89.64% classification accuracy and occupies only 37 Loihi cores.
arXiv Detail & Related papers (2020-05-16T17:00:10Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
Deep neural networks (DNNs) are vulnerable to adversarial examples and other data perturbations.
GraN is a time- and parameter-efficient method that is easily adaptable to any DNN.
GraN achieves state-of-the-art performance on numerous problem set-ups.
arXiv Detail & Related papers (2020-04-20T10:09:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.