Harnessing Neuron Stability to Improve DNN Verification
- URL: http://arxiv.org/abs/2401.14412v1
- Date: Fri, 19 Jan 2024 23:48:04 GMT
- Title: Harnessing Neuron Stability to Improve DNN Verification
- Authors: Hai Duong, Dong Xu, ThanhVu Nguyen, Matthew B. Dwyer
- Abstract summary: We present VeriStable, a novel extension of recently proposed DPLL-based constraint DNN verification approach.
We evaluate the effectiveness of VeriStable across a range of challenging benchmarks including fully-connected feed networks (FNNs), convolutional neural networks (CNNs) and residual networks (ResNets)
Preliminary results show that VeriStable is competitive and outperforms state-of-the-art verification tools, including $alpha$-$beta$-CROWN and MN-BaB, the first and second performers of the VNN-COMP, respectively.
- Score: 42.65507402735545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNN) have emerged as an effective approach to tackling
real-world problems. However, like human-written software, DNNs are susceptible
to bugs and attacks. This has generated significant interests in developing
effective and scalable DNN verification techniques and tools. In this paper, we
present VeriStable, a novel extension of recently proposed DPLL-based
constraint DNN verification approach. VeriStable leverages the insight that
while neuron behavior may be non-linear across the entire DNN input space, at
intermediate states computed during verification many neurons may be
constrained to have linear behavior - these neurons are stable. Efficiently
detecting stable neurons reduces combinatorial complexity without compromising
the precision of abstractions. Moreover, the structure of clauses arising in
DNN verification problems shares important characteristics with industrial SAT
benchmarks. We adapt and incorporate multi-threading and restart optimizations
targeting those characteristics to further optimize DPLL-based DNN
verification. We evaluate the effectiveness of VeriStable across a range of
challenging benchmarks including fully-connected feedforward networks (FNNs),
convolutional neural networks (CNNs) and residual networks (ResNets) applied to
the standard MNIST and CIFAR datasets. Preliminary results show that VeriStable
is competitive and outperforms state-of-the-art DNN verification tools,
including $\alpha$-$\beta$-CROWN and MN-BaB, the first and second performers of
the VNN-COMP, respectively.
Related papers
- RSC-SNN: Exploring the Trade-off Between Adversarial Robustness and Accuracy in Spiking Neural Networks via Randomized Smoothing Coding [17.342181435229573]
Spiking Neural Networks (SNNs) have received widespread attention due to their unique neuronal dynamics and low-power nature.
Previous research empirically shows that SNNs with Poisson coding are more robust than Artificial Neural Networks (ANNs) on small-scale datasets.
This work theoretically demonstrates that SNN's inherent adversarial robustness stems from its Poisson coding.
arXiv Detail & Related papers (2024-07-29T15:26:15Z) - Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty
from Pre-trained Models [40.38541033389344]
Deep Neural Networks (DNNs) are powerful tools for various computer vision tasks, yet they often struggle with reliable uncertainty quantification.
We introduce the Adaptable Bayesian Neural Network (ABNN), a simple and scalable strategy to seamlessly transform DNNs into BNNs.
We conduct extensive experiments across multiple datasets for image classification and semantic segmentation tasks, and our results demonstrate that ABNN achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-12-23T16:39:24Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - OccRob: Efficient SMT-Based Occlusion Robustness Verification of Deep
Neural Networks [7.797299214812479]
Occlusion is a prevalent and easily realizable semantic perturbation to deep neural networks (DNNs)
It can fool a DNN into misclassifying an input image by occluding some segments, possibly resulting in severe errors.
Most existing robustness verification approaches for DNNs are focused on non-semantic perturbations.
arXiv Detail & Related papers (2023-01-27T18:54:00Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning.
To make full use of the training data, we propose a full data learning method for speech enhancement.
arXiv Detail & Related papers (2020-11-11T06:32:37Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - CodNN -- Robust Neural Networks From Coded Classification [27.38642191854458]
Deep Neural Networks (DNNs) are a revolutionary force in the ongoing information revolution.
DNNs are highly sensitive to noise, whether adversarial or random.
This poses a fundamental challenge for hardware implementations of DNNs, and for their deployment in critical applications such as autonomous driving.
By our approach, either the data or internal layers of the DNN are coded with error correcting codes, and successful computation under noise is guaranteed.
arXiv Detail & Related papers (2020-04-22T17:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.