A Committee of Convolutional Neural Networks for Image Classication in
the Concurrent Presence of Feature and Label Noise
- URL: http://arxiv.org/abs/2004.10705v2
- Date: Mon, 22 Jun 2020 20:54:13 GMT
- Title: A Committee of Convolutional Neural Networks for Image Classication in
the Concurrent Presence of Feature and Label Noise
- Authors: Stanis{\l}aw Ka\'zmierczak, Jacek Ma\'ndziuk
- Abstract summary: This piece of research is the first attempt to address the problem of concurrent occurrence of both types of noise.
We experimentally proved that the difference by which committees beat single models increases along with noise level.
We propose three committee selection algorithms that outperform a strong baseline algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image classification has become a ubiquitous task. Models trained on good
quality data achieve accuracy which in some application domains is already
above human-level performance. Unfortunately, real-world data are quite often
degenerated by the noise existing in features and/or labels. There are quite
many papers that handle the problem of either feature or label noise,
separately. However, to the best of our knowledge, this piece of research is
the first attempt to address the problem of concurrent occurrence of both types
of noise. Basing on the MNIST, CIFAR-10 and CIFAR-100 datasets, we
experimentally proved that the difference by which committees beat single
models increases along with noise level, no matter it is an attribute or label
disruption. Thus, it makes ensembles legitimate to be applied to noisy images
with noisy labels. The aforementioned committees' advantage over single models
is positively correlated with dataset difficulty level as well. We propose
three committee selection algorithms that outperform a strong baseline
algorithm which relies on an ensemble of individual (nonassociated) best
models.
Related papers
- AlleNoise: large-scale text classification benchmark dataset with real-world label noise [40.11095094521714]
We present AlleNoise, a new curated text classification benchmark dataset with real-world instance-dependent label noise.
The noise distribution comes from actual users of a major e-commerce marketplace, so it realistically reflects the semantics of human mistakes.
We demonstrate that a representative selection of established methods for learning with noisy labels is inadequate to handle such real-world noise.
arXiv Detail & Related papers (2024-06-24T09:29:14Z) - Multiclass Learning from Noisy Labels for Non-decomposable Performance Measures [15.358504449550013]
We design algorithms to learn from noisy labels for two broad classes of non-decomposable performance measures.
In both cases, we develop noise-corrected versions of the algorithms under the widely studied class-conditional noise models.
Our experiments demonstrate the effectiveness of our algorithms in handling label noise.
arXiv Detail & Related papers (2024-02-01T23:03:53Z) - Rethinking the Value of Labels for Instance-Dependent Label Noise
Learning [43.481591776038144]
noisy labels in real-world applications often depend on both the true label and the features.
In this work, we tackle instance-dependent label noise with a novel deep generative model that avoids explicitly modeling the noise transition matrix.
Our algorithm leverages casual representation learning and simultaneously identifies the high-level content and style latent factors from the data.
arXiv Detail & Related papers (2023-05-10T15:29:07Z) - Learning with Neighbor Consistency for Noisy Labels [69.83857578836769]
We present a method for learning from noisy labels that leverages similarities between training examples in feature space.
We evaluate our method on datasets evaluating both synthetic (CIFAR-10, CIFAR-100) and realistic (mini-WebVision, Clothing1M, mini-ImageNet-Red) noise.
arXiv Detail & Related papers (2022-02-04T15:46:27Z) - Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations [54.400167806154535]
Existing research on learning with noisy labels mainly focuses on synthetic label noise.
This work presents two new benchmark datasets (CIFAR-10N, CIFAR-100N)
We show that real-world noisy labels follow an instance-dependent pattern rather than the classically adopted class-dependent ones.
arXiv Detail & Related papers (2021-10-22T22:42:11Z) - Training Classifiers that are Universally Robust to All Label Noise
Levels [91.13870793906968]
Deep neural networks are prone to overfitting in the presence of label noise.
We propose a distillation-based framework that incorporates a new subcategory of Positive-Unlabeled learning.
Our framework generally outperforms at medium to high noise levels.
arXiv Detail & Related papers (2021-05-27T13:49:31Z) - Learning with Group Noise [106.56780716961732]
We propose a novel Max-Matching method for learning with group noise.
The performance on arange of real-world datasets in the area of several learning paradigms demonstrates the effectiveness of Max-Matching.
arXiv Detail & Related papers (2021-03-17T06:57:10Z) - Learning with Feature-Dependent Label Noise: A Progressive Approach [19.425199841491246]
We propose a new family of feature-dependent label noise, which is much more general than commonly used i.i.d. label noise.
We provide theoretical guarantees showing that for a wide variety of (unknown) noise patterns, a classifier trained with this strategy converges to be consistent with the Bayes classifier.
arXiv Detail & Related papers (2021-03-13T17:34:22Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
arXiv Detail & Related papers (2021-01-14T05:43:51Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.