Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model
- URL: http://arxiv.org/abs/2101.05467v1
- Date: Thu, 14 Jan 2021 05:43:51 GMT
- Title: Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model
- Authors: Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, Chen Gong
- Abstract summary: This paper proposes a simple yet universal probabilistic model, which explicitly relates noisy labels to their instances.
Experiments on datasets with both synthetic and real-world label noise verify that the proposed method yields significant improvements on robustness.
- Score: 80.91927573604438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The drastic increase of data quantity often brings the severe decrease of
data quality, such as incorrect label annotations, which poses a great
challenge for robustly training Deep Neural Networks (DNNs). Existing learning
\mbox{methods} with label noise either employ ad-hoc heuristics or restrict to
specific noise assumptions. However, more general situations, such as
instance-dependent label noise, have not been fully explored, as scarce studies
focus on their label corruption process. By categorizing instances into
confusing and unconfusing instances, this paper proposes a simple yet universal
probabilistic model, which explicitly relates noisy labels to their instances.
The resultant model can be realized by DNNs, where the training procedure is
accomplished by employing an alternating optimization algorithm. Experiments on
datasets with both synthetic and real-world label noise verify that the
proposed method yields significant improvements on robustness over
state-of-the-art counterparts.
Related papers
- Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Noisy Label Processing for Classification: A Survey [2.8821062918162146]
In the long, tedious process of data annotation, annotators are prone to make mistakes, resulting in incorrect labels of images.
It is crucial to combat noisy labels for computer vision tasks, especially for classification tasks.
We propose an algorithm to generate a synthetic label noise pattern guided by real-world data.
arXiv Detail & Related papers (2024-04-05T15:11:09Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
Learning from noisy labels is an important and long-standing problem in machine learning for real applications.
In this paper, we reformulate the label-noise problem from a generative-model perspective.
Our model achieves new state-of-the-art (SOTA) results on all the standard real-world benchmark datasets.
arXiv Detail & Related papers (2023-05-31T03:01:36Z) - Rethinking the Value of Labels for Instance-Dependent Label Noise
Learning [43.481591776038144]
noisy labels in real-world applications often depend on both the true label and the features.
In this work, we tackle instance-dependent label noise with a novel deep generative model that avoids explicitly modeling the noise transition matrix.
Our algorithm leverages casual representation learning and simultaneously identifies the high-level content and style latent factors from the data.
arXiv Detail & Related papers (2023-05-10T15:29:07Z) - Learning with Noisy labels via Self-supervised Adversarial Noisy Masking [33.87292143223425]
We propose a novel training approach termed adversarial noisy masking.
It adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples.
It is tested on both synthetic and real-world noisy datasets.
arXiv Detail & Related papers (2023-02-14T03:13:26Z) - Learning from Noisy Labels with Coarse-to-Fine Sample Credibility
Modeling [22.62790706276081]
Training deep neural network (DNN) with noisy labels is practically challenging.
Previous efforts tend to handle part or full data in a unified denoising flow.
We propose a coarse-to-fine robust learning method called CREMA to handle noisy data in a divide-and-conquer manner.
arXiv Detail & Related papers (2022-08-23T02:06:38Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - Instance-dependent Label-noise Learning under a Structural Causal Model [92.76400590283448]
Label noise will degenerate the performance of deep learning algorithms.
By leveraging a structural causal model, we propose a novel generative approach for instance-dependent label-noise learning.
arXiv Detail & Related papers (2021-09-07T10:42:54Z) - Open-set Label Noise Can Improve Robustness Against Inherent Label Noise [27.885927200376386]
We show that open-set noisy labels can be non-toxic and even benefit the robustness against inherent noisy labels.
We propose a simple yet effective regularization by introducing Open-set samples with Dynamic Noisy Labels (ODNL) into training.
arXiv Detail & Related papers (2021-06-21T07:15:50Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
The presence of label noise often misleads the training of deep neural networks.
We show that the errors in human-annotated labels are more likely to be dependent on the difficulty levels of tasks.
arXiv Detail & Related papers (2020-12-22T06:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.