What are We Depressed about When We Talk about COVID19: Mental Health
Analysis on Tweets Using Natural Language Processing
- URL: http://arxiv.org/abs/2004.10899v3
- Date: Mon, 8 Jun 2020 23:06:46 GMT
- Title: What are We Depressed about When We Talk about COVID19: Mental Health
Analysis on Tweets Using Natural Language Processing
- Authors: Irene Li, Yixin Li, Tianxiao Li, Sergio Alvarez-Napagao, Dario
Garcia-Gasulla and Toyotaro Suzumura
- Abstract summary: We train deep models that classify each tweet into the following emotions.
We propose and compare two methods to find out the reasons that are causing sadness and fear.
- Score: 8.450147171958776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The outbreak of coronavirus disease 2019 (COVID-19) recently has affected
human life to a great extent. Besides direct physical and economic threats, the
pandemic also indirectly impact people's mental health conditions, which can be
overwhelming but difficult to measure. The problem may come from various
reasons such as unemployment status, stay-at-home policy, fear for the virus,
and so forth. In this work, we focus on applying natural language processing
(NLP) techniques to analyze tweets in terms of mental health. We trained deep
models that classify each tweet into the following emotions: anger,
anticipation, disgust, fear, joy, sadness, surprise and trust. We build the
EmoCT (Emotion-Covid19-Tweet) dataset for the training purpose by manually
labeling 1,000 English tweets. Furthermore, we propose and compare two methods
to find out the reasons that are causing sadness and fear.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - Exploring COVID-19 Related Stressors Using Topic Modeling [0.0]
This study aims to apply natural language processing (NLP) on social media data to identify psychosocial stressors during COVID-19 pandemic.
We obtained dataset of 9266 Reddit posts from subreddit rCOVID19_support, from 14th Feb.
2020 to 19th July 2021.
Our result presented a dashboard to visualize the trend of prevalence of topics about covid-19 related stressors being discussed on social media platform.
arXiv Detail & Related papers (2022-01-12T20:22:43Z) - When a crisis strikes: Emotion analysis and detection during COVID-19 [96.03869351276478]
We present CovidEmo, 1K tweets labeled with emotions.
We examine how well large pre-trained language models generalize across domains and crises.
arXiv Detail & Related papers (2021-07-23T04:07:14Z) - COVID-19 sentiment analysis via deep learning during the rise of novel
cases [0.5156484100374059]
We use deep learning based language models via long short-term memory (LSTM) recurrent neural networks for sentiment analysis on Twitter.
We find that the majority of the tweets have been positive with high levels of optimism during the rise of the COVID-19 cases in India.
We find that the optimistic and joking tweets mostly dominated the monthly tweets and there was a much lower number of negative sentiments expressed.
arXiv Detail & Related papers (2021-04-05T04:31:19Z) - COVID-19 Emotion Monitoring as a Tool to Increase Preparedness for
Disease Outbreaks in Developing Regions [0.0]
We develop a Twitter emotion-monitor system based on a state-of-the-art natural-language processing model.
The system monitors six different emotions on accounts in cities, as well as politicians and health-authorities Twitter accounts.
arXiv Detail & Related papers (2020-12-17T12:58:06Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
We analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020.
We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population.
The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean.
arXiv Detail & Related papers (2020-10-15T16:02:25Z) - Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using
Social Media [14.662523926129117]
We analyze the topic and sentiment dynamics due to COVID-19 from the massive social media posts.
Some topics like stay safe home" are dominated with positive sentiment.
The others such as people death" are consistently showing negative sentiment.
arXiv Detail & Related papers (2020-07-05T12:05:30Z) - Psychometric Analysis and Coupling of Emotions Between State Bulletins
and Twitter in India during COVID-19 Infodemic [7.428097999824421]
COVID-19 infodemic has been spreading faster than the pandemic itself.
Since social media is the largest source of information, managing the infodemic requires mitigating of misinformation.
Twitter alone has seen a sharp 45% increase in the usage of its curated events page.
arXiv Detail & Related papers (2020-05-12T01:51:07Z) - Detecting Perceived Emotions in Hurricane Disasters [62.760131661847986]
We introduce HurricaneEmo, an emotion dataset of 15,000 English tweets spanning three hurricanes: Harvey, Irma, and Maria.
We present a comprehensive study of fine-grained emotions and propose classification tasks to discriminate between coarse-grained emotion groups.
arXiv Detail & Related papers (2020-04-29T16:17:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.