Exploring COVID-19 Related Stressors Using Topic Modeling
- URL: http://arxiv.org/abs/2202.00476v1
- Date: Wed, 12 Jan 2022 20:22:43 GMT
- Title: Exploring COVID-19 Related Stressors Using Topic Modeling
- Authors: Yue Tong Leung, Farzad Khalvati
- Abstract summary: This study aims to apply natural language processing (NLP) on social media data to identify psychosocial stressors during COVID-19 pandemic.
We obtained dataset of 9266 Reddit posts from subreddit rCOVID19_support, from 14th Feb.
2020 to 19th July 2021.
Our result presented a dashboard to visualize the trend of prevalence of topics about covid-19 related stressors being discussed on social media platform.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The COVID-19 pandemic has affected lives of people from different countries
for almost two years. The changes on lifestyles due to the pandemic may cause
psychosocial stressors for individuals, and have a potential to lead to mental
health problems. To provide high quality mental health supports, healthcare
organization need to identify the COVID-19 specific stressors, and notice the
trends of prevalence of those stressors. This study aims to apply natural
language processing (NLP) on social media data to identify the psychosocial
stressors during COVID-19 pandemic, and to analyze the trend on prevalence of
stressors at different stages of the pandemic. We obtained dataset of 9266
Reddit posts from subreddit \rCOVID19_support, from 14th Feb ,2020 to 19th July
2021. We used Latent Dirichlet Allocation (LDA) topic model and lexicon methods
to identify the topics that were mentioned on the subreddit. Our result
presented a dashboard to visualize the trend of prevalence of topics about
covid-19 related stressors being discussed on social media platform. The result
could provide insights about the prevalence of pandemic related stressors
during different stages of COVID-19. The NLP techniques leveraged in this study
could also be applied to analyze event specific stressors in the future.
Related papers
- Predicting Depression and Anxiety: A Multi-Layer Perceptron for
Analyzing the Mental Health Impact of COVID-19 [1.9809980686152868]
We introduce a multi-layer perceptron (MLP) called the COVID-19 Depression and Anxiety Predictor (CoDAP) to predict mental health trends during the COVID-19 pandemic.
Our method utilizes a comprehensive dataset, which tracked mental health symptoms weekly over ten weeks during the initial COVID-19 wave (April to June 2020) in a diverse cohort of U.S. adults.
This model not only predicts patterns of anxiety and depression during the pandemic but also unveils key insights into the interplay of demographic factors, behavioral changes, and social determinants of mental health.
arXiv Detail & Related papers (2024-03-09T22:49:04Z) - Human Behavior in the Time of COVID-19: Learning from Big Data [71.26355067309193]
Since March 2020, there have been over 600 million confirmed cases of COVID-19 and more than six million deaths.
The pandemic has impacted and even changed human behavior in almost every aspect.
Researchers have been employing big data techniques such as natural language processing, computer vision, audio signal processing, frequent pattern mining, and machine learning.
arXiv Detail & Related papers (2023-03-23T17:19:26Z) - Exploring Social Media for Early Detection of Depression in COVID-19
Patients [44.76299288962596]
Detection and intervention at an early stage can reduce the risk of depression in COVID-19 patients.
We managed a dataset of COVID-19 patients that contains information about their social media activity both before and after infection.
We conducted an extensive analysis of this dataset to investigate the characteristic of COVID-19 patients with a higher risk of depression.
arXiv Detail & Related papers (2023-02-23T14:13:52Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - The MuSe 2022 Multimodal Sentiment Analysis Challenge: Humor, Emotional
Reactions, and Stress [71.06453250061489]
The Multimodal Sentiment Analysis Challenge (MuSe) 2022 is dedicated to multimodal sentiment and emotion recognition.
For this year's challenge, we feature three datasets: (i) the Passau Spontaneous Football Coach Humor dataset that contains audio-visual recordings of German football coaches, labelled for the presence of humour; (ii) the Hume-Reaction dataset in which reactions of individuals to emotional stimuli have been annotated with respect to seven emotional expression intensities; and (iii) the Ulm-Trier Social Stress Test dataset comprising of audio-visual data labelled with continuous emotion values of people in stressful dispositions.
arXiv Detail & Related papers (2022-06-23T13:34:33Z) - Identifying pandemic-related stress factors from social-media posts --
effects on students and young-adults [2.198430261120653]
The COVID-19 pandemic has thrown natural life out of gear across the globe.
Strict measures are deployed to curb the spread of the virus that is causing it, and the most effective of them have been social isolation.
This has led to wide-spread gloom and depression across society but more so among the young and the elderly.
arXiv Detail & Related papers (2020-12-01T08:42:27Z) - Quantifying the Effects of COVID-19 on Mental Health Support Forums [36.33098793087009]
We quantify the rate at which COVID-19 is discussed in each community, or subreddit, in order to understand levels of preoccupation with the pandemic.
Next, we examine the volume of activity in order to determine whether the quantity of people seeking online mental health support has risen.
Finally, we analyze how COVID-19 has influenced language use and topics of discussion within each subreddit.
arXiv Detail & Related papers (2020-09-08T21:59:08Z) - Health, Psychosocial, and Social issues emanating from COVID-19 pandemic
based on Social Media Comments using Natural Language Processing [8.150081210763567]
The COVID-19 pandemic has caused a global health crisis that affects many aspects of human lives.
Social media data can reveal public perceptions toward how governments and health agencies are handling the pandemic.
This paper aims to investigate the impact of the COVID-19 pandemic on people globally using social media data.
arXiv Detail & Related papers (2020-07-23T17:19:50Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using
Social Media [14.662523926129117]
We analyze the topic and sentiment dynamics due to COVID-19 from the massive social media posts.
Some topics like stay safe home" are dominated with positive sentiment.
The others such as people death" are consistently showing negative sentiment.
arXiv Detail & Related papers (2020-07-05T12:05:30Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
We train on Italy's early COVID-19 outbreak through Twitter and transfer to several other countries.
Our experiments show strong results with up to 0.85 Spearman correlation in cross-country predictions.
arXiv Detail & Related papers (2020-06-05T02:04:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.