Many-body Decay of the Gapped Lowest Excitation of a Bose-Einstein
Condensate
- URL: http://arxiv.org/abs/2004.11363v1
- Date: Thu, 23 Apr 2020 17:59:11 GMT
- Title: Many-body Decay of the Gapped Lowest Excitation of a Bose-Einstein
Condensate
- Authors: Jinyi Zhang, Christoph Eigen, Wei Zheng, Jake A. P. Glidden, Timon A.
Hilker, Samuel J. Garratt, Raphael Lopes, Nigel R. Cooper, Zoran Hadzibabic,
Nir Navon
- Abstract summary: We study the decay mechanism of the gapped lowest-lying excitation of a quasi-pure box-trapped atomic Bose-Einstein condensate.
We develop a universal theoretical model that explains this fundamental nonlinear damping.
- Score: 1.3573792952910084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the decay mechanism of the gapped lowest-lying excitation of a
quasi-pure box-trapped atomic Bose-Einstein condensate. Owing to the absence of
lower-energy modes, or direct coupling to an external bath, this excitation is
protected against one-body (linear) decay and the damping mechanism is
exclusively nonlinear. We develop a universal theoretical model that explains
this fundamental nonlinear damping as a process whereby two quanta of the
gapped lowest excitation mode couple to a higher-energy mode, which
subsequently decays into a continuum. We find quantitative agreement between
our experiments and the predictions of this model. Finally, by strongly driving
the system below its (lowest) resonant frequency we observe third-harmonic
generation, a hallmark of nonlinear behavior.
Related papers
- Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Nonequilibrium Nonlinear Effects and Dynamical Boson Condensation in a Driven-Dissipative Wannier-Stark Lattice [0.0]
Driven-dissipative light-matter systems can exhibit collective nonequilibrium phenomena due to loss and gain processes.
We numerically predict a diverse range of stationary and non-stationary states resulting from the interplay of the tilt, tunneling, on-site interactions and loss and gain processes.
arXiv Detail & Related papers (2024-04-29T12:28:52Z) - Quantized Thouless pumps protected by interactions in dimerized Rydberg tweezer arrays [41.94295877935867]
In the noninteracting case, quantized Thouless pumps can only occur when a topological singularity is encircled adiabatically.
In the presence of interactions, such topological transport can even persist for exotic paths in which the system gets arbitrarily close to the noninteracting singularity.
arXiv Detail & Related papers (2024-02-14T16:58:21Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Ultrastrong Coupling of a Qubit with a Nonlinear Optical Resonator [0.0]
We study the interaction of a two-level atom with a single-mode nonlinear electromagnetic resonator.
When the qubit-resonator coupling is very strong, the standard Kerr model for the resonator becomes questionable.
arXiv Detail & Related papers (2021-11-26T11:54:21Z) - Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits [68.8204255655161]
We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
arXiv Detail & Related papers (2021-06-09T16:21:31Z) - Atomic self-organization emerging from tunable quadrature coupling [5.624813092014403]
We propose a novel scheme to couple two density-wave degrees of freedom of a BEC to two quadratures of the cavity field.
We unravel a dynamically unstable state induced by the cavity dissipation.
Our work enriches the quantum simulation toolbox in the cavity-quantum-electrodynamics system.
arXiv Detail & Related papers (2020-04-07T13:25:44Z) - Optical response of atom chains beyond the limit of low light intensity:
The validity of the linear classical oscillator model [0.0]
We study the case of perfectly mode-matched drives and the case of standing wave drives.
By individually exciting eigenmodes we find that this critical intensity has a $upsilon_alpha2.5$ scaling for narrower resonances and more strongly interacting systems.
The $upsilon_alpha3$ scaling also corresponds to the semiclassical result whereby quantum fluctuations between the atoms have been neglected.
arXiv Detail & Related papers (2020-02-04T17:32:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.