Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits
- URL: http://arxiv.org/abs/2106.05179v2
- Date: Tue, 7 Dec 2021 05:51:38 GMT
- Title: Intrinsic mechanisms for drive-dependent Purcell decay in
superconducting quantum circuits
- Authors: Ryo Hanai, Alexander McDonald, Aashish Clerk
- Abstract summary: We find that in a wide range of settings, the cavity-qubit detuning controls whether a non-zero photonic population increases or decreases qubit decay Purcell.
Our method combines insights from a Keldysh treatment of the system, and Lindblad theory.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a new approach to understanding intrinsic mechanisms that cause
the $T_1$-decay rate of a multi-level superconducting qubit to depend on the
photonic population of a coupled, detuned cavity. Our method yields simple
analytic expressions for both the coherently driven or thermally excited cases
which are in good agreement with full master equation numerics, and also
facilitates direct physical intuition. It also predicts several new phenomena.
In particular, we find that in a wide range of settings, the cavity-qubit
detuning controls whether a non-zero photonic population increases or decreases
qubit Purcell decay. Our method combines insights from a Keldysh treatment of
the system, and Lindblad perturbation theory.
Related papers
- Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Quantum Fluctuation Dynamics of Dispersive Superradiant Pulses in a
Hybrid Light-Matter System [0.0]
We consider theoretically a driven-dissipative quantum many-body system consisting of an atomic ensemble in a single-mode optical cavity.
In this hybrid light-matter system the interplay between coherent and dissipative processes leads to superradiant pulses with a build-up of strong correlations.
arXiv Detail & Related papers (2023-02-16T04:34:33Z) - Spectral Engineering of Cavity-Protected Polaritons in an Atomic
Ensemble with Controlled Disorder [0.0]
We observe the transition from a disordered regime to a polaritonic one with only two resonances.
We realize a dynamically modulated Tavis-Cumming model to produce a comb of narrow polariton resonances protected from the disorder.
arXiv Detail & Related papers (2022-08-25T13:40:32Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Non-Markovian decoherence dynamics of the hybrid quantum system with a
cavity strongly coupling to a spin ensemble: a master equation approach [1.8492669447784602]
We show how the decoherence induced by the inhomogeneous broadening is suppressed in the strong-coupling regime.
We also investigate the two-time correlations in this system to further show how quantum fluctuations manifest quantum memory.
arXiv Detail & Related papers (2020-06-29T14:13:59Z) - Manipulating intertwined orders in solids with quantum light [5.967693211208606]
We show the vacuum fluctuations effectively enhance the charge-density-wave correlation, giving rise to a phase with entangled electronic order and photon coherence.
Our study suggests a new and generalisable pathway to control intertwined orders and create light-matter entanglement in quantum materials.
arXiv Detail & Related papers (2020-05-15T16:57:36Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.