Beyond Data Samples: Aligning Differential Networks Estimation with
Scientific Knowledge
- URL: http://arxiv.org/abs/2004.11494v2
- Date: Thu, 21 Apr 2022 19:42:31 GMT
- Title: Beyond Data Samples: Aligning Differential Networks Estimation with
Scientific Knowledge
- Authors: Arshdeep Sekhon, Zhe Wang, Yanjun Qi
- Abstract summary: The proposed estimator is scalable to a large number of variables and achieves a sharp convergence rate.
Our results highlight significant benefits of integrating group, spatial and anatomic knowledge during differential genetic network identification and brain connectome change discovery.
- Score: 18.980524563441975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning the differential statistical dependency network between two contexts
is essential for many real-life applications, mostly in the high dimensional
low sample regime. In this paper, we propose a novel differential network
estimator that allows integrating various sources of knowledge beyond data
samples. The proposed estimator is scalable to a large number of variables and
achieves a sharp asymptotic convergence rate. Empirical experiments on
extensive simulated data and four real-world applications (one on neuroimaging
and three from functional genomics) show that our approach achieves improved
differential network estimation and provides better supports to downstream
tasks like classification. Our results highlight significant benefits of
integrating group, spatial and anatomic knowledge during differential genetic
network identification and brain connectome change discovery.
Related papers
- Representation-Enhanced Neural Knowledge Integration with Application to Large-Scale Medical Ontology Learning [3.010503480024405]
We propose a theoretically guaranteed statistical framework, called RENKI, to enable simultaneous learning of relation types.
The proposed framework incorporates representation learning output into initial entity embedding of a neural network that approximates the score function for the knowledge graph.
We demonstrate the effect of weighting in the presence of heterogeneous relations and the benefit of incorporating representation learning in nonparametric models.
arXiv Detail & Related papers (2024-10-09T21:38:48Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - Mutual Information Estimation via $f$-Divergence and Data Derangements [6.43826005042477]
We propose a novel class of discrimi mutual information estimators based on the variational representation of the $f$-divergence.
The proposed estimator is flexible since it exhibits an excellent bias/ variance trade-off.
arXiv Detail & Related papers (2023-05-31T16:54:25Z) - MAGDiff: Covariate Data Set Shift Detection via Activation Graphs of Deep Neural Networks [8.887179103071388]
We propose a new family of representations, called MAGDiff, that we extract from any given neural network classifier.
These representations are computed by comparing the activation graphs of the neural network for samples belonging to the training distribution and to the target distribution.
We show that our novel representations induce significant improvements over a state-of-the-art baseline relying on the network output.
arXiv Detail & Related papers (2023-05-22T17:34:47Z) - Learning Likelihood Ratios with Neural Network Classifiers [0.12277343096128711]
approximations of the likelihood ratio may be computed using clever parametrizations of neural network-based classifiers.
We present a series of empirical studies detailing the performance of several common loss functionals and parametrizations of the classifier output.
arXiv Detail & Related papers (2023-05-17T18:11:38Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Latent Network Structure Learning from High Dimensional Multivariate
Point Processes [5.079425170410857]
We propose a new class of nonstationary Hawkes processes to characterize the complex processes underlying the observed data.
We estimate the latent network structure using an efficient sparse least squares estimation approach.
We demonstrate the efficacy of our proposed method through simulation studies and an application to a neuron spike train data set.
arXiv Detail & Related papers (2020-04-07T17:48:01Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.