Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset
- URL: http://arxiv.org/abs/2010.02012v1
- Date: Mon, 28 Sep 2020 18:30:14 GMT
- Title: Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset
- Authors: Muhammad Yousefnezhad, Jeffrey Sawalha, Alessandro Selvitella,
Daoqiang Zhang
- Abstract summary: This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
- Score: 81.02949933048332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Similarity analysis is one of the crucial steps in most fMRI studies.
Representational Similarity Analysis (RSA) can measure similarities of neural
signatures generated by different cognitive states. This paper develops Deep
Representational Similarity Learning (DRSL), a deep extension of RSA that is
appropriate for analyzing similarities between various cognitive tasks in fMRI
datasets with a large number of subjects, and high-dimensionality -- such as
whole-brain images. Unlike the previous methods, DRSL is not limited by a
linear transformation or a restricted fixed nonlinear kernel function -- such
as Gaussian kernel. DRSL utilizes a multi-layer neural network for mapping
neural responses to linear space, where this network can implement a customized
nonlinear transformation for each subject separately. Furthermore, utilizing a
gradient-based optimization in DRSL can significantly reduce runtime of
analysis on large datasets because it uses a batch of samples in each iteration
rather than all neural responses to find an optimal solution. Empirical studies
on multi-subject fMRI datasets with various tasks -- including visual stimuli,
decision making, flavor, and working memory -- confirm that the proposed method
achieves superior performance to other state-of-the-art RSA algorithms.
Related papers
- CLIP-MUSED: CLIP-Guided Multi-Subject Visual Neural Information Semantic
Decoding [14.484475792279671]
We propose a CLIP-guided Multi-sUbject visual neural information SEmantic Decoding (CLIP-MUSED) method.
Our method consists of a Transformer-based feature extractor to effectively model global neural representations.
It also incorporates learnable subject-specific tokens that facilitates the aggregation of multi-subject data.
arXiv Detail & Related papers (2024-02-14T07:41:48Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Convolutional neural network based on sparse graph attention mechanism
for MRI super-resolution [0.34410212782758043]
Medical image super-resolution (SR) reconstruction using deep learning techniques can enhance lesion analysis and assist doctors in improving diagnostic efficiency and accuracy.
Existing deep learning-based SR methods rely on convolutional neural networks (CNNs), which inherently limit the expressive capabilities of these models.
We propose an A-network that utilizes multiple convolution operator feature extraction modules (MCO) for extracting image features.
arXiv Detail & Related papers (2023-05-29T06:14:22Z) - FAST-AID Brain: Fast and Accurate Segmentation Tool using Artificial
Intelligence Developed for Brain [0.8376091455761259]
A novel deep learning method is proposed for fast and accurate segmentation of the human brain into 132 regions.
The proposed model uses an efficient U-Net-like network and benefits from the intersection points of different views and hierarchical relations.
The proposed method can be applied to brain MRI data including skull or any other artifacts without preprocessing the images or a drop in performance.
arXiv Detail & Related papers (2022-08-30T16:06:07Z) - Complex-valued Federated Learning with Differential Privacy and MRI Applications [51.34714485616763]
We introduce the complex-valued Gaussian mechanism, whose behaviour we characterise in terms of $f$-DP, $(varepsilon, delta)$-DP and R'enyi-DP.
We present novel complex-valued neural network primitives compatible with DP.
Experimentally, we showcase a proof-of-concept by training federated complex-valued neural networks with DP on a real-world task.
arXiv Detail & Related papers (2021-10-07T14:03:00Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains by processing through binary neural dynamic activations.
This paper proposes to leverage multiple compartments that sample independent spiking signals while sharing synaptic weights.
The key idea is to use these signals to obtain more accurate statistical estimates of the log-likelihood training criterion, as well as of its gradient.
arXiv Detail & Related papers (2021-02-05T16:39:42Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.