論文の概要: Deep Global Registration
- arxiv url: http://arxiv.org/abs/2004.11540v2
- Date: Fri, 8 May 2020 08:59:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 03:27:13.186676
- Title: Deep Global Registration
- Title(参考訳): ディープグローバル登録
- Authors: Christopher Choy, Wei Dong, Vladlen Koltun
- Abstract要約: Deep Global Registrationは、現実世界の3Dスキャンをペアで登録するための、差別化可能なフレームワークである。
我々の手法は、学習ベースと古典的両方の最先端の手法を実世界のデータで上回ります。
- 参考スコア(独自算出の注目度): 90.05565444450524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Deep Global Registration, a differentiable framework for pairwise
registration of real-world 3D scans. Deep global registration is based on three
modules: a 6-dimensional convolutional network for correspondence confidence
prediction, a differentiable Weighted Procrustes algorithm for closed-form pose
estimation, and a robust gradient-based SE(3) optimizer for pose refinement.
Experiments demonstrate that our approach outperforms state-of-the-art methods,
both learning-based and classical, on real-world data.
- Abstract(参考訳): 実世界の3Dスキャンを相互に登録するフレームワークであるDeep Global Registrationを提案する。
ディープグローバル登録は、対応信頼度予測のための6次元畳み込みネットワーク、クローズドフォームポーズ推定のための微分可能重み付き探索アルゴリズム、ポーズ修正のための頑健な勾配ベースSE(3)オプティマイザの3つのモジュールに基づいている。
実験により,本手法は実世界データを用いた学習法と古典法の両方において最先端手法よりも優れていることが示された。
関連論文リスト
- SE(3) Diffusion Model-based Point Cloud Registration for Robust 6D
Object Pose Estimation [66.16525145765604]
実世界のシナリオにおける6次元オブジェクトポーズ推定のためのSE(3)拡散モデルに基づく点クラウド登録フレームワークを提案する。
提案手法は,3次元登録タスクをデノナイズ拡散過程として定式化し,音源雲の姿勢を段階的に洗練する。
実世界のTUD-L, LINEMOD, およびOccluded-LINEMODデータセットにおいて, 拡散登録フレームワークが顕著なポーズ推定性能を示すことを示す。
論文 参考訳(メタデータ) (2023-10-26T12:47:26Z) - Volumetric Semantically Consistent 3D Panoptic Mapping [77.13446499924977]
非構造環境における自律エージェントに適したセマンティック3Dマップを生成することを目的としたオンライン2次元から3次元のセマンティック・インスタンスマッピングアルゴリズムを提案する。
マッピング中にセマンティック予測の信頼性を統合し、セマンティックおよびインスタンス一貫性のある3D領域を生成する新しい方法を導入する。
提案手法は,パブリックな大規模データセット上での最先端の精度を実現し,多くの広く使用されているメトリクスを改善した。
論文 参考訳(メタデータ) (2023-09-26T08:03:10Z) - DPODv2: Dense Correspondence-Based 6 DoF Pose Estimation [24.770767430749288]
DPODv2(Dense Pose Object Detector)と呼ばれる3ステージ6DoFオブジェクト検出手法を提案する。
本研究では,2次元物体検出器と高密度対応推定ネットワークを組み合わせることで,フル6DFのポーズを推定する多視点ポーズ補正手法を提案する。
DPODv2は、使用済みのデータモダリティとトレーニングデータの種類によらず、高速でスケーラブルなまま、すべてのデータに対して優れた結果を得る。
論文 参考訳(メタデータ) (2022-07-06T16:48:56Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
6次元変換パラメータ空間におけるハフ投票を利用した実世界の3Dスキャンのペア登録のための効率的なフレームワークを提案する。
提案手法は, 3DMatch と 3DLoMatch のベンチマークにおいて, KITTI odometry データセットで同等の性能を達成しながら, 最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-09-09T14:38:06Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
ポイントクラウドの登録は、3Dコンピュータビジョン、グラフィックス、ロボット工学の基本的な問題である。
本稿では,最初の学習ベース登録法であるDeep Gaussian Mixture Registration(DeepGMR)を紹介する。
提案手法は,最先端の幾何学的および学習的登録手法と比較して,良好な性能を示す。
論文 参考訳(メタデータ) (2020-08-20T17:25:16Z) - DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF
Relocalization [56.15308829924527]
生の3D点から直接3次元特徴の検出と記述を共同で学習するシームズネットワークを提案する。
3次元キーポイントを検出するために,局所的な記述子の識別性を教師なしで予測する。
各種ベンチマーク実験により,本手法はグローバルポイントクラウド検索とローカルポイントクラウド登録の両面で競合する結果が得られた。
論文 参考訳(メタデータ) (2020-07-17T20:21:22Z) - Variational State-Space Models for Localisation and Dense 3D Mapping in
6 DoF [17.698319441265223]
深部状態空間モデルにおける近似ベイズ推定として,空間環境における6-DoFの局所化と3次元密度再構成の問題を解く。
この結果、現在の最先端のビジュアルSLAMソリューションに欠ける、世界の表現力のある予測モデルが生まれる。
我々は、最先端のビジュアル・慣性オドメトリーシステムの性能に近づいた、現実的な無人航空機の飛行データに対するアプローチを評価した。
論文 参考訳(メタデータ) (2020-06-17T22:06:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。