Variance Reduction for Better Sampling in Continuous Domains
- URL: http://arxiv.org/abs/2004.11687v1
- Date: Fri, 24 Apr 2020 12:25:48 GMT
- Title: Variance Reduction for Better Sampling in Continuous Domains
- Authors: Laurent Meunier, Carola Doerr, Jeremy Rapin, Olivier Teytaud
- Abstract summary: We show that the optimal search distribution might be more peaked around the center of the distribution than the prior distribution.
We provide explicit values for this reshaping of the search distribution depending on the population size.
- Score: 5.675136204504504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Design of experiments, random search, initialization of population-based
methods, or sampling inside an epoch of an evolutionary algorithm use a sample
drawn according to some probability distribution for approximating the location
of an optimum. Recent papers have shown that the optimal search distribution,
used for the sampling, might be more peaked around the center of the
distribution than the prior distribution modelling our uncertainty about the
location of the optimum. We confirm this statement, provide explicit values for
this reshaping of the search distribution depending on the population size
$\lambda$ and the dimension $d$, and validate our results experimentally.
Related papers
- Adaptive Online Bayesian Estimation of Frequency Distributions with Local Differential Privacy [0.4604003661048266]
We propose a novel approach for the adaptive and online estimation of the frequency distribution of a finite number of categories under the local differential privacy (LDP) framework.
The proposed algorithm performs Bayesian parameter estimation via posterior sampling and adapts the randomization mechanism for LDP based on the obtained posterior samples.
We provide a theoretical analysis showing that (i) the posterior distribution targeted by the algorithm converges to the true parameter even for approximate posterior sampling, and (ii) the algorithm selects the optimal subset with high probability if posterior sampling is performed exactly.
arXiv Detail & Related papers (2024-05-11T13:59:52Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Optimal Budgeted Rejection Sampling for Generative Models [54.050498411883495]
Rejection sampling methods have been proposed to improve the performance of discriminator-based generative models.
We first propose an Optimal Budgeted Rejection Sampling scheme that is provably optimal.
Second, we propose an end-to-end method that incorporates the sampling scheme into the training procedure to further enhance the model's overall performance.
arXiv Detail & Related papers (2023-11-01T11:52:41Z) - Optimize-via-Predict: Realizing out-of-sample optimality in data-driven
optimization [0.0]
We examine a formulation for data-driven optimization wherein the decision-maker is not privy to the true distribution.
We define a prescriptive solution as a decisionvendor rule mapping such a data set to decisions.
We present an optimization problem that would solve for such an out-of-sample optimal solution, and does so efficiently by a combination of sampling and bisection search algorithms.
arXiv Detail & Related papers (2023-09-20T08:48:50Z) - Distribution Shift Inversion for Out-of-Distribution Prediction [57.22301285120695]
We propose a portable Distribution Shift Inversion algorithm for Out-of-Distribution (OoD) prediction.
We show that our method provides a general performance gain when plugged into a wide range of commonly used OoD algorithms.
arXiv Detail & Related papers (2023-06-14T08:00:49Z) - Diverse Human Motion Prediction via Gumbel-Softmax Sampling from an
Auxiliary Space [34.83587750498361]
Diverse human motion prediction aims at predicting multiple possible future pose sequences from a sequence of observed poses.
Previous approaches usually employ deep generative networks to model the conditional distribution of data, and then randomly sample outcomes from the distribution.
We propose a novel sampling strategy for sampling very diverse results from an imbalanced multimodal distribution.
arXiv Detail & Related papers (2022-07-15T09:03:57Z) - Learning Structured Gaussians to Approximate Deep Ensembles [10.055143995729415]
This paper proposes using a sparse-structured multivariate Gaussian to provide a closed-form approxorimator for dense image prediction tasks.
We capture the uncertainty and structured correlations in the predictions explicitly in a formal distribution, rather than implicitly through sampling alone.
We demonstrate the merits of our approach on monocular depth estimation and show that the advantages of our approach are obtained with comparable quantitative performance.
arXiv Detail & Related papers (2022-03-29T12:34:43Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Instance-Optimal Compressed Sensing via Posterior Sampling [101.43899352984774]
We show for Gaussian measurements and emphany prior distribution on the signal, that the posterior sampling estimator achieves near-optimal recovery guarantees.
We implement the posterior sampling estimator for deep generative priors using Langevin dynamics, and empirically find that it produces accurate estimates with more diversity than MAP.
arXiv Detail & Related papers (2021-06-21T22:51:56Z) - Meta-Learning Conjugate Priors for Few-Shot Bayesian Optimization [0.0]
We propose a novel approach to utilize meta-learning to automate the estimation of informative conjugate prior distributions.
From this process we generate priors that require only few data to estimate the shape parameters of the original distribution of the data.
arXiv Detail & Related papers (2021-01-03T23:58:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.