Enhanced Importance Sampling through Latent Space Exploration in Normalizing Flows
- URL: http://arxiv.org/abs/2501.03394v1
- Date: Mon, 06 Jan 2025 21:18:02 GMT
- Title: Enhanced Importance Sampling through Latent Space Exploration in Normalizing Flows
- Authors: Liam A. Kruse, Alexandros E. Tzikas, Harrison Delecki, Mansur M. Arief, Mykel J. Kochenderfer,
- Abstract summary: importance sampling is a rare event simulation technique used in Monte Carlo simulations.
We propose a method for more efficient sampling by updating the proposal distribution in the latent space of a normalizing flow.
- Score: 69.8873421870522
- License:
- Abstract: Importance sampling is a rare event simulation technique used in Monte Carlo simulations to bias the sampling distribution towards the rare event of interest. By assigning appropriate weights to sampled points, importance sampling allows for more efficient estimation of rare events or tails of distributions. However, importance sampling can fail when the proposal distribution does not effectively cover the target distribution. In this work, we propose a method for more efficient sampling by updating the proposal distribution in the latent space of a normalizing flow. Normalizing flows learn an invertible mapping from a target distribution to a simpler latent distribution. The latent space can be more easily explored during the search for a proposal distribution, and samples from the proposal distribution are recovered in the space of the target distribution via the invertible mapping. We empirically validate our methodology on simulated robotics applications such as autonomous racing and aircraft ground collision avoidance.
Related papers
- Learned Reference-based Diffusion Sampling for multi-modal distributions [2.1383136715042417]
We introduce Learned Reference-based Diffusion Sampler (LRDS), a methodology specifically designed to leverage prior knowledge on the location of the target modes.
LRDS proceeds in two steps by learning a reference diffusion model on samples located in high-density space regions.
We experimentally demonstrate that LRDS best exploits prior knowledge on the target distribution compared to competing algorithms on a variety of challenging distributions.
arXiv Detail & Related papers (2024-10-25T10:23:34Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Annealing Flow Generative Model Towards Sampling High-Dimensional and Multi-Modal Distributions [6.992239210938067]
Annealing Flow is a continuous normalizing flow based approach designed to sample from high dimensional and multimodal distributions.
AF ensures effective and balanced mode exploration, achieves linear complexity in sample size and dimensions, and circumvents inefficient mixing times.
arXiv Detail & Related papers (2024-09-30T17:48:22Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Distribution Shift Inversion for Out-of-Distribution Prediction [57.22301285120695]
We propose a portable Distribution Shift Inversion algorithm for Out-of-Distribution (OoD) prediction.
We show that our method provides a general performance gain when plugged into a wide range of commonly used OoD algorithms.
arXiv Detail & Related papers (2023-06-14T08:00:49Z) - Efficient Multimodal Sampling via Tempered Distribution Flow [11.36635610546803]
We develop a new type of transport-based sampling method called TemperFlow.
Various experiments demonstrate the superior performance of this novel sampler compared to traditional methods.
We show its applications in modern deep learning tasks such as image generation.
arXiv Detail & Related papers (2023-04-08T06:40:06Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
We put forward four methods for learning sampling distributions from observed measurements.
Experiments demonstrate that learned sampling distributions exhibit better performance than designed, minimum-degeneracy sampling distributions.
arXiv Detail & Related papers (2023-02-02T15:50:21Z) - Sampling from Discrete Energy-Based Models with Quality/Efficiency
Trade-offs [3.491202838583993]
Energy-Based Models (EBMs) allow for extremely flexible specifications of probability distributions.
They do not provide a mechanism for obtaining exact samples from these distributions.
We propose a new approximate sampling technique, Quasi Rejection Sampling (QRS), that allows for a trade-off between sampling efficiency and sampling quality.
arXiv Detail & Related papers (2021-12-10T17:51:37Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
Particle filtering is used to compute good nonlinear estimates of complex systems.
We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios.
arXiv Detail & Related papers (2021-10-06T16:58:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.