A Review of Privacy-preserving Federated Learning for the
Internet-of-Things
- URL: http://arxiv.org/abs/2004.11794v2
- Date: Tue, 8 Sep 2020 14:08:19 GMT
- Title: A Review of Privacy-preserving Federated Learning for the
Internet-of-Things
- Authors: Christopher Briggs, Zhong Fan, Peter Andras
- Abstract summary: This work reviews federated learning as an approach for performing machine learning on distributed data.
We aim to protect the privacy of user-generated data as well as reducing communication costs associated with data transfer.
We identify the strengths and weaknesses of different methods applied to federated learning.
- Score: 3.3517146652431378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Internet-of-Things (IoT) generates vast quantities of data, much of it
attributable to individuals' activity and behaviour. Gathering personal data
and performing machine learning tasks on this data in a central location
presents a significant privacy risk to individuals as well as challenges with
communicating this data to the cloud. However, analytics based on machine
learning and in particular deep learning benefit greatly from large amounts of
data to develop high-performance predictive models. This work reviews federated
learning as an approach for performing machine learning on distributed data
with the goal of protecting the privacy of user-generated data as well as
reducing communication costs associated with data transfer. We survey a wide
variety of papers covering communication-efficiency, client heterogeneity and
privacy preserving methods that are crucial for federated learning in the
context of the IoT. Throughout this review, we identify the strengths and
weaknesses of different methods applied to federated learning and finally, we
outline future directions for privacy preserving federated learning research,
particularly focusing on IoT applications.
Related papers
- FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Using Decentralized Aggregation for Federated Learning with Differential
Privacy [0.32985979395737774]
Federated Learning (FL) provides some level of privacy by retaining the data at the local node.
This research deploys an experimental environment for FL with Differential Privacy (DP) using benchmark datasets.
arXiv Detail & Related papers (2023-11-27T17:02:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - A Survey on Blockchain-Based Federated Learning and Data Privacy [1.0499611180329802]
Federated learning is a decentralized machine learning paradigm that allows multiple clients to collaborate by leveraging local computational power and the models transmission.
On the other hand, federated learning has the drawback of data leakage due to the lack of privacy-preserving mechanisms employed during storage, transfer, and sharing.
This survey aims to compare the performance and security of various data privacy mechanisms adopted in blockchain-based federated learning architectures.
arXiv Detail & Related papers (2023-06-29T23:43:25Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - DQRE-SCnet: A novel hybrid approach for selecting users in Federated
Learning with Deep-Q-Reinforcement Learning based on Spectral Clustering [1.174402845822043]
Machine learning models based on sensitive data in the real-world promise advances in areas ranging from medical screening to disease outbreaks, agriculture, industry, defense science, and more.
In many applications, learning participant communication rounds benefit from collecting their own private data sets, teaching detailed machine learning models on the real data, and sharing the benefits of using these models.
Due to existing privacy and security concerns, most people avoid sensitive data sharing for training. Without each user demonstrating their local data to a central server, Federated Learning allows various parties to train a machine learning algorithm on their shared data jointly.
arXiv Detail & Related papers (2021-11-07T15:14:29Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Reliability Check via Weight Similarity in Privacy-Preserving
Multi-Party Machine Learning [7.552100672006174]
We focus on addressing the concerns of data privacy, model privacy, and data quality associated with multi-party machine learning.
We present a scheme for privacy-preserving collaborative learning that checks the participants' data quality while guaranteeing data and model privacy.
arXiv Detail & Related papers (2021-01-14T08:55:42Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
We present TIPRDC, a task-independent privacy-respecting data crowdsourcing framework with anonymized intermediate representation.
The goal of this framework is to learn a feature extractor that can hide the privacy information from the intermediate representations; while maximally retaining the original information embedded in the raw data for the data collector to accomplish unknown learning tasks.
arXiv Detail & Related papers (2020-05-23T06:21:26Z) - Anonymizing Data for Privacy-Preserving Federated Learning [3.3673553810697827]
We propose the first syntactic approach for offering privacy in the context of federated learning.
Our approach aims to maximize utility or model performance, while supporting a defensible level of privacy.
We perform a comprehensive empirical evaluation on two important problems in the healthcare domain, using real-world electronic health data of 1 million patients.
arXiv Detail & Related papers (2020-02-21T02:30:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.