論文の概要: A survey on domain adaptation theory: learning bounds and theoretical
guarantees
- arxiv url: http://arxiv.org/abs/2004.11829v6
- Date: Wed, 13 Jul 2022 20:21:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 02:57:50.772734
- Title: A survey on domain adaptation theory: learning bounds and theoretical
guarantees
- Title(参考訳): ドメイン適応理論に関する調査研究--学習境界と理論的保証
- Authors: Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, Youn\`es
Bennani
- Abstract要約: この調査の主な目的は、特定の、そして間違いなく最も人気のある、移動学習のサブフィールドにおける最先端の理論的結果の概要を提供することである。
このサブフィールドでは、学習タスクは同じままで、トレーニングとテストデータの間でデータ分布が変化すると仮定される。
本稿では、ドメイン適応問題に関連する既存の結果の最新の記述について述べる。
- 参考スコア(独自算出の注目度): 17.71634393160982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: All famous machine learning algorithms that comprise both supervised and
semi-supervised learning work well only under a common assumption: the training
and test data follow the same distribution. When the distribution changes, most
statistical models must be reconstructed from newly collected data, which for
some applications can be costly or impossible to obtain. Therefore, it has
become necessary to develop approaches that reduce the need and the effort to
obtain new labeled samples by exploiting data that are available in related
areas, and using these further across similar fields. This has given rise to a
new machine learning framework known as transfer learning: a learning setting
inspired by the capability of a human being to extrapolate knowledge across
tasks to learn more efficiently. Despite a large amount of different transfer
learning scenarios, the main objective of this survey is to provide an overview
of the state-of-the-art theoretical results in a specific, and arguably the
most popular, sub-field of transfer learning, called domain adaptation. In this
sub-field, the data distribution is assumed to change across the training and
the test data, while the learning task remains the same. We provide a first
up-to-date description of existing results related to domain adaptation problem
that cover learning bounds based on different statistical learning frameworks.
- Abstract(参考訳): 教師付き学習と半教師付き学習の両方を構成する有名な機械学習アルゴリズムはすべて、共通の前提の下でのみ機能する。
分布が変化すると、ほとんどの統計モデルは新しく収集されたデータから再構築されなければならない。
そのため, 関連分野のデータを活用し, 類似分野にまたがって利用することで, 新たなラベル付きサンプルの取得の必要性や労力を低減できるアプローチを開発する必要がある。
これは、タスク間で知識を外挿し、より効率的に学習する人間の能力に触発された学習環境である、転送学習(transfer learning)と呼ばれる新しい機械学習フレームワークを生み出した。
トランスファー学習のシナリオは多岐にわたるが、この調査の主な目的は、ドメイン適応と呼ばれる、特定の、おそらく最も人気のあるトランスファー学習のサブフィールドにおいて、最先端の理論結果の概要を提供することである。
このサブフィールドでは、学習タスクは同じままで、トレーニングとテストデータの間でデータ分布が変化すると仮定される。
本稿では,異なる統計的学習フレームワークに基づく学習境界をカバーする領域適応問題に関連する既存の結果の最新の記述について述べる。
関連論文リスト
- Domain Generalization through Meta-Learning: A Survey [6.524870790082051]
ディープニューラルネットワーク(DNN)は人工知能に革命をもたらしたが、アウト・オブ・ディストリビューション(OOD)データに直面すると、しばしばパフォーマンスが低下する。
本調査はメタラーニングの領域を掘り下げ,ドメインの一般化への貢献に焦点をあてたものである。
論文 参考訳(メタデータ) (2024-04-03T14:55:17Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Algorithms and Theory for Supervised Gradual Domain Adaptation [19.42476993856205]
本研究では, 学習者に対して, 学習経路に沿った変化分布からラベル付きデータを利用できるようにするための, 教師付き段階的領域適応の課題について検討する。
この設定の下では、軽度な仮定の下で学習誤差に関する最初の一般化上限を提供する。
本研究の結果は, 損失関数の範囲に依存しないアルゴリズムであり, 軌道上の平均学習誤差にのみ依存する。
論文 参考訳(メタデータ) (2022-04-25T13:26:11Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
ディープニューラルネットワークは、新しいタスクを学んだ後、これまで学んだ知識の破滅的な忘れ込みに悩まされることが多い。
提案手法は、ドメインシフト中の新しいタスクを精度良く学習することで、DomainNetやOfficeHomeといった挑戦的なデータセットで最大10%向上する。
論文 参考訳(メタデータ) (2022-03-08T09:57:48Z) - f-Domain-Adversarial Learning: Theory and Algorithms [82.97698406515667]
教師なしのドメイン適応は、トレーニング中、ターゲットドメイン内のラベルなしデータにアクセス可能な、多くの機械学習アプリケーションで使用されている。
領域適応のための新しい一般化法を導出し、f-発散体の変分的特徴に基づく分布間の相違性の新しい尺度を利用する。
論文 参考訳(メタデータ) (2021-06-21T18:21:09Z) - A Concise Review of Transfer Learning [1.5771347525430772]
転送学習は、他の関連するソースデータを適用することで、ターゲット学習者のパフォーマンスを高めることを目的としている。
従来の機械学習とデータマイニングのテクニックは、トレーニングとテストのデータは同じ特徴空間と分布から来ていると仮定する。
論文 参考訳(メタデータ) (2021-04-05T20:34:55Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
そこで本研究では,実験で得られた複雑なインプット・アウトプット関係を事前に学習する手法を提案する。
RLエージェントが新規な動作を試す能力を阻害することなく、この学習が新しいタスクを迅速に学習するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2020-11-19T18:47:40Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
ほとんどの機械学習アルゴリズムの基本的な前提は、トレーニングとテストデータは、同じ基礎となる分布から引き出されることである。
本研究では,学習データをドメインに構造化し,複数のテスト時間シフトが存在する場合の領域一般化の問題点について考察する。
本稿では、適応リスク最小化(ARM)の枠組みを紹介し、モデルがトレーニング領域に適応することを学ぶことで、効果的な適応のために直接最適化される。
論文 参考訳(メタデータ) (2020-07-06T17:59:30Z) - A Survey on Self-supervised Pre-training for Sequential Transfer
Learning in Neural Networks [1.1802674324027231]
移動学習のための自己教師付き事前学習は、ラベルのないデータを用いて最先端の結果を改善する技術として、ますます人気が高まっている。
本稿では,自己指導型学習と伝達学習の分類学の概要を述べるとともに,各領域にまたがる事前学習タスクを設計するためのいくつかの顕著な手法を強調した。
論文 参考訳(メタデータ) (2020-07-01T22:55:48Z) - Uniform Priors for Data-Efficient Transfer [65.086680950871]
もっとも移動可能な特徴は埋め込み空間において高い均一性を有することを示す。
我々は、未確認のタスクやデータへの適応を容易にする能力の正規化を評価する。
論文 参考訳(メタデータ) (2020-06-30T04:39:36Z) - Minimax Lower Bounds for Transfer Learning with Linear and One-hidden
Layer Neural Networks [27.44348371795822]
転送学習の限界を特徴付けるための統計的ミニマックスフレームワークを開発する。
ラベル付きソース数とターゲットデータの関数として,任意のアルゴリズムで達成可能なターゲット一般化誤差に対して,低いバウンドを導出する。
論文 参考訳(メタデータ) (2020-06-16T22:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。