Pattern-based Long Short-term Memory for Mid-term Electrical Load
Forecasting
- URL: http://arxiv.org/abs/2004.11834v1
- Date: Wed, 22 Apr 2020 08:39:32 GMT
- Title: Pattern-based Long Short-term Memory for Mid-term Electrical Load
Forecasting
- Authors: Pawe{\l} Pe{\l}ka and Grzegorz Dudek
- Abstract summary: This work presents a network for forecasting a monthly electricity demand time series with a one-year horizon.
The novelty of this work is the use of pattern representation of the seasonal time series as an alternative to decomposition.
A simulation study performed on the monthly electricity demand time series for 35 European countries confirmed the high performance of the proposed model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a Long Short-Term Memory (LSTM) network for forecasting a
monthly electricity demand time series with a one-year horizon. The novelty of
this work is the use of pattern representation of the seasonal time series as
an alternative to decomposition. Pattern representation simplifies the complex
nonlinear and nonstationary time series, filtering out the trend and equalizing
variance. Two types of patterns are defined: x-pattern and y-pattern. The
former requires additional forecasting for the coding variables. The latter
determines the coding variables from the process history. A hybrid approach
based on x-patterns turned out to be more accurate than the standard LSTM
approach based on a raw time series. In this combined approach an x-pattern is
forecasted using a sequence-to-sequence LSTM network and the coding variables
are forecasted using exponential smoothing. A simulation study performed on the
monthly electricity demand time series for 35 European countries confirmed the
high performance of the proposed model and its competitiveness to classical
models such as ARIMA and exponential smoothing as well as the MLP neural
network model.
Related papers
- Sundial: A Family of Highly Capable Time Series Foundation Models [64.6322079384575]
We introduce Sundial, a family of native, flexible, and scalable time series foundation models.
Our model is pre-trained without specifying any prior distribution and can generate multiple probable predictions.
By mitigating mode collapse through TimeFlow Loss, we pre-train a family of Sundial models on TimeBench, which exhibit unprecedented model capacity and generalization performance.
arXiv Detail & Related papers (2025-02-02T14:52:50Z) - Moirai-MoE: Empowering Time Series Foundation Models with Sparse Mixture of Experts [103.725112190618]
This paper introduces Moirai-MoE, using a single input/output projection layer while delegating the modeling of diverse time series patterns to the sparse mixture of experts.
Extensive experiments on 39 datasets demonstrate the superiority of Moirai-MoE over existing foundation models in both in-distribution and zero-shot scenarios.
arXiv Detail & Related papers (2024-10-14T13:01:11Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters [16.966008476215258]
This paper introduces SparseTSF, a novel, extremely lightweight model for Long-term Time Series Forecasting (LTSF)
At the heart of SparseTSF lies the Cross-Period Sparse Forecasting technique, which simplifies the forecasting task by decoupling the periodicity and trend in time series data.
SparseTSF showcases remarkable generalization capabilities, making it well-suited for scenarios with limited computational resources, small samples, or low-quality data.
arXiv Detail & Related papers (2024-05-02T02:15:23Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data.
Our method relies on a continuous-time-dependent model of the series' evolution dynamics.
A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows.
arXiv Detail & Related papers (2023-06-09T13:20:04Z) - Randomized Neural Networks for Forecasting Time Series with Multiple
Seasonality [0.0]
This work contributes to the development of neural forecasting models with novel randomization-based learning methods.
A pattern-based representation of time series makes the proposed approach useful for forecasting time series with multiple seasonality.
arXiv Detail & Related papers (2021-07-04T18:39:27Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - Pattern Similarity-based Machine Learning Methods for Mid-term Load
Forecasting: A Comparative Study [0.0]
We use pattern similarity-based methods for forecasting monthly electricity demand expressing annual seasonality.
An integral part of the models is the time series representation using patterns of time series sequences.
We consider four such models: nearest neighbor model, fuzzy neighborhood model, kernel regression model and general regression neural network.
arXiv Detail & Related papers (2020-03-03T12:14:36Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
We present a deep learning structural time series model which can handle correlated multivariate time series input.
The model explicitly learns/extracts the trend, seasonality, and event components.
We compare our model with several state-of-the-art methods through a comprehensive set of experiments on a variety of time series data sets.
arXiv Detail & Related papers (2020-01-02T18:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.