TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series
- URL: http://arxiv.org/abs/2310.01327v2
- Date: Mon, 25 Mar 2024 15:55:22 GMT
- Title: TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series
- Authors: Arjun Ashok, Étienne Marcotte, Valentina Zantedeschi, Nicolas Chapados, Alexandre Drouin,
- Abstract summary: Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
- Score: 57.4208255711412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new model for multivariate probabilistic time series prediction, designed to flexibly address a range of tasks including forecasting, interpolation, and their combinations. Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS), wherein the number of distributional parameters now scales linearly with the number of variables instead of factorially. The new objective requires the introduction of a training curriculum, which goes hand-in-hand with necessary changes to the original architecture. We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks, while maintaining the flexibility of prior work, such as seamless handling of unaligned and unevenly-sampled time series. Code is made available at https://github.com/ServiceNow/TACTiS.
Related papers
- CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning [17.614980614656407]
We propose Continual Generative training for Incremental prompt-Learning.
We exploit Variational Autoencoders to learn class-conditioned distributions.
We show that such a generative replay approach can adapt to new tasks while improving zero-shot capabilities.
arXiv Detail & Related papers (2024-07-22T16:51:28Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
This paper aims at the early development of large time series models (LTSM)
During pre-training, we curate large-scale datasets with up to 1 billion time points.
To meet diverse application needs, we convert forecasting, imputation, and anomaly detection of time series into a unified generative task.
arXiv Detail & Related papers (2024-02-04T06:55:55Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
We propose a novel framework, TEMPO, that can effectively learn time series representations.
TEMPO expands the capability for dynamically modeling real-world temporal phenomena from data within diverse domains.
arXiv Detail & Related papers (2023-10-08T00:02:25Z) - Ti-MAE: Self-Supervised Masked Time Series Autoencoders [16.98069693152999]
We propose a novel framework named Ti-MAE, in which the input time series are assumed to follow an integrate distribution.
Ti-MAE randomly masks out embedded time series data and learns an autoencoder to reconstruct them at the point-level.
Experiments on several public real-world datasets demonstrate that our framework of masked autoencoding could learn strong representations directly from the raw data.
arXiv Detail & Related papers (2023-01-21T03:20:23Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Unsupervised Time Series Outlier Detection with Diversity-Driven
Convolutional Ensembles -- Extended Version [29.753910237103216]
We propose a diversity-driven, convolutional ensemble for outlier detection.
The ensemble employs multiple basic outlier detection models built on convolutional sequence-to-sequence autoencoders.
A novel diversity-driven training method maintains diversity among the basic models, with the aim of improving the ensemble's accuracy.
arXiv Detail & Related papers (2021-11-22T10:58:53Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
In many real-world problems, collecting a large number of labeled samples is infeasible.
Few-shot learning is the dominant approach to address this issue, where the objective is to quickly adapt to novel categories in presence of a limited number of samples.
We propose a novel training mechanism that simultaneously enforces equivariance and invariance to a general set of geometric transformations.
arXiv Detail & Related papers (2021-03-01T21:14:33Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
We present a deep learning structural time series model which can handle correlated multivariate time series input.
The model explicitly learns/extracts the trend, seasonality, and event components.
We compare our model with several state-of-the-art methods through a comprehensive set of experiments on a variety of time series data sets.
arXiv Detail & Related papers (2020-01-02T18:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.