Stable, low-error and calibration-free polarization encoder for
free-space quantum communication
- URL: http://arxiv.org/abs/2004.11877v1
- Date: Fri, 24 Apr 2020 17:40:29 GMT
- Title: Stable, low-error and calibration-free polarization encoder for
free-space quantum communication
- Authors: Marco Avesani, Costantino Agnesi, Andrea Stanco, Giuseppe Vallone and
Paolo Villoresi
- Abstract summary: Polarization-encoded free-space Quantum Communication requires a quantum state source featuring fast polarization modulation, long-term stability and a low intrinsic error rate.
Here we present a source based on a Sagnac interferometer and composed of polarization maintaining fibers, a fiber polarization beam splitter and an electro-optic phase modulator.
The system generates predetermined polarization states with a fixed reference frame in free-space that does not require calibration neither at the transmitter nor at the receiver.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polarization-encoded free-space Quantum Communication requires a quantum
state source featuring fast polarization modulation, long-term stability and a
low intrinsic error rate. Here we present a source based on a Sagnac
interferometer and composed of polarization maintaining fibers, a fiber
polarization beam splitter and an electro-optic phase modulator. The system
generates predetermined polarization states with a fixed reference frame in
free-space that does not require calibration neither at the transmitter nor at
the receiver. In this way we achieve long-term stability and low error rates. A
proof-of-concept experiment is also reported, demonstrating a Quantum Bit Error
Rate lower than 0.2% for several hours without any active recalibration of the
devices.
Related papers
- Continuous Automatic Polarization Channel Stabilization from Heterodyne Detection of Coexisting Dim Reference Signals [5.602886645159814]
Quantum networking continues to encode information in polarization states due to ease and precision.
variable environmental polarization transformations induced by deployed fiber need correction for deployed quantum networking.
We present a new method for automatic polarization compensation ( APC) and demonstrate its performance on a metropolitan quantum network.
arXiv Detail & Related papers (2024-11-22T18:58:01Z) - Fast and Automated Optical Polarization Compensation of Fiber Unitaries [0.0]
We present a fast and automated method for polarization compensation using liquid crystals.
This approach combines polarimetry based on a rotating quarter-waveplate with high-speed control of the liquid-crystal cell, offering high-fidelity compensation suitable for diverse applications.
Our method achieves over 99% fidelity within an average of fewer than six iterations, with further fine-tuning to reach above 99.5% fidelity.
arXiv Detail & Related papers (2024-11-18T20:20:32Z) - Polarization-encoded quantum key distribution with a room-temperature telecom single-photon emitter [47.54990103162742]
Single photon sources (SPSs) are directly applicable in quantum key distribution (QKD)
We report an observation of polarization-encoded QKD using a room-temperature telecom SPS based on a GaN defect.
arXiv Detail & Related papers (2024-09-25T16:17:36Z) - All-fiber microendoscopic polarization sensing at single-photon level aided by deep-learning [0.0]
We introduce a real-time polarization measurement method that is accurate down to a single-photon level.
We validate the approach by visualizing the polarization structure of biological specimens and the liquid crystal polymer sample.
arXiv Detail & Related papers (2024-05-03T15:22:04Z) - Non-local polarization alignment and control in fiber using feedback
from correlated measurements of entangled photons [0.7174734306558701]
Quantum measurements that use the entangled photons' polarization to encode quantum information require calibration and alignment of the measurement bases.
We report here a fast method for automatic alignment and dynamic tracking of the polarization measurement bases between spatially separated detectors.
arXiv Detail & Related papers (2022-09-14T20:37:00Z) - Telecom-band Hyperentangled Photon Pairs from a Fiber-based Source [49.06242674127539]
We experimentally demonstrate the generation of telecom-band biphotons hyperentangled in both the polarization and frequency DoFs.
The states produced by our hyperentanglement source can enable protocols such as dense coding and high-dimensional quantum key distribution.
arXiv Detail & Related papers (2021-12-06T21:37:43Z) - Cross-encoded quantum key distribution exploiting time-bin and
polarization states with qubit-based synchronization [0.0]
Cross-encoded quantum states are prepared through a self-compensating polarization modulator and transmitted using a polarization-to-time-bin converter.
System was tested in a 12 hour run and demonstrated good and stable performance in terms of key and quantum bit error rates.
arXiv Detail & Related papers (2021-11-26T09:41:40Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Fibre polarization state compensation in entanglement-based quantum key
distribution [62.997667081978825]
Quantum Key Distribution (QKD) using polarisation encoding can be hard to implement over deployed telecom fibres.
We show a technique for dynamically compensating fibre-induced alteration in a QKD system over deployed fibre.
arXiv Detail & Related papers (2021-07-16T00:53:48Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Transmon platform for quantum computing challenged by chaotic
fluctuations [55.41644538483948]
We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
arXiv Detail & Related papers (2020-12-10T19:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.