Transmon platform for quantum computing challenged by chaotic
fluctuations
- URL: http://arxiv.org/abs/2012.05923v2
- Date: Mon, 20 Dec 2021 08:43:44 GMT
- Title: Transmon platform for quantum computing challenged by chaotic
fluctuations
- Authors: Christoph Berke, Evangelos Varvelis, Simon Trebst, Alexander Altland
and David P. DiVincenzo
- Abstract summary: We investigate the stability of a variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors.
We find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.
- Score: 55.41644538483948
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: From the perspective of many body physics, the transmon qubit architectures
currently developed for quantum computing are systems of coupled nonlinear
quantum resonators. A significant amount of intentional frequency detuning
(disorder) is required to protect individual qubit states against the
destabilizing effects of nonlinear resonator coupling. Here we investigate the
stability of this variant of a many-body localized (MBL) phase for system
parameters relevant to current quantum processors of two different types, those
using untunable qubits (IBM type) and those using tunable qubits (Delft/Google
type). Applying three independent diagnostics of localization theory -- a
Kullback-Leibler analysis of spectral statistics, statistics of many-body wave
functions (inverse participation ratios), and a Walsh transform of the
many-body spectrum -- we find that these computing platforms are dangerously
close to a phase of uncontrollable chaotic fluctuations.
Related papers
- Demonstration of a parity-time symmetry breaking phase transition using superconducting and trapped-ion qutrits [26.16988649207652]
We show that a qutrit, a three-level quantum system, is capable of realizing this non-equilibrium phase transition.
Results indicate the potential advantage of multi-level (qudit) processors in simulating physical effects.
arXiv Detail & Related papers (2023-10-31T13:10:43Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Fano-Qubits for Quantum Devices with Enhanced Isolation and Bandwidth [0.6105362142646117]
Magneto-optical isolators and circulators have been widely used to safeguard quantum devices from reflections and noise in the readout stage.
We propose a new approach to quantum non-reciprocity that utilizes the intrinsic nonlinearity of qubits and broken spatial symmetry.
We show that a circuit containing Lorentz-type qubits can be transformed into Fano-type qubits with an asymmetric spectral response.
arXiv Detail & Related papers (2023-03-17T22:43:52Z) - Harnessing quantumness of states using discrete Wigner functions under
(non)-Markovian quantum channels [0.0]
The study of Wigner negativity and its evolution under different quantum channels can provide insight into the stability and robustness of quantum states.
We construct different negative quantum states which can be used as a resource for quantum computation and quantum teleportation.
arXiv Detail & Related papers (2023-03-09T14:41:38Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Stabilization of Qubit Relaxation Rates by Frequency Modulation [68.8204255655161]
Temporal, spectral, and sample-to-sample fluctuations in coherence properties of qubits form an outstanding challenge for the development of upscaled fault-tolerant quantum computers.
A ubiquitous source for these fluctuations in superconducting qubits is a set of atomic-scale defects with a two-level structure.
We show that frequency modulation of a qubit or, alternatively, of the two-level defects, leads to averaging of the qubit relaxation rate over a wide interval of frequencies.
arXiv Detail & Related papers (2021-04-08T11:32:03Z) - Characterizing many-body localization via exact disorder-averaged
quantum noise [0.0]
Many-body localized (MBL) phases of disordered quantum many-particle systems have a number of unique properties.
We characterize the quantum noise that a disordered spin system exerts on its parts via an influence matrix (IM)
Viewed as a wavefunction in the space of trajectories of an individual spin, the IM exhibits slow scaling of temporal entanglement in the MBL phase.
arXiv Detail & Related papers (2020-12-01T19:01:31Z) - Variational Simulation of Schwinger's Hamiltonian with Polarisation
Qubits [0.0]
We study the effect of noise on the quantum phase transition in the Schwinger model.
Experiments are built using a free space optical scheme to realize a pair of polarization qubits.
We find that despite the presence of noise one can detect the phase transition of the Schwinger Hamiltonian even for a two-qubit system.
arXiv Detail & Related papers (2020-09-21T00:39:01Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.