論文の概要: Spectral Data Augmentation Techniques to quantify Lung Pathology from
CT-images
- arxiv url: http://arxiv.org/abs/2004.11989v1
- Date: Fri, 24 Apr 2020 20:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 04:09:59.123208
- Title: Spectral Data Augmentation Techniques to quantify Lung Pathology from
CT-images
- Title(参考訳): ct画像から肺病理を定量化するためのスペクトルデータ拡張法
- Authors: Subhradeep Kayal and Florian Dubost and Harm A. W. M. Tiddens and
Marleen de Bruijne
- Abstract要約: 本稿では,離散コサイン変換とウェーブレット変換を用いて,データ拡張のためのスペクトル手法を提案する。
嚢胞性線維症に対するCTテクスチャ解析のアプローチを実証的に評価した。
- 参考スコア(独自算出の注目度): 6.283778222138156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data augmentation is of paramount importance in biomedical image processing
tasks, characterized by inadequate amounts of labelled data, to best use all of
the data that is present. In-use techniques range from intensity
transformations and elastic deformations, to linearly combining existing data
points to make new ones. In this work, we propose the use of spectral
techniques for data augmentation, using the discrete cosine and wavelet
transforms. We empirically evaluate our approaches on a CT texture analysis
task to detect abnormal lung-tissue in patients with cystic fibrosis. Empirical
experiments show that the proposed spectral methods perform favourably as
compared to the existing methods. When used in combination with existing
methods, our proposed approach can increase the relative minor class
segmentation performance by 44.1% over a simple replication baseline.
- Abstract(参考訳): データ拡張は、ラベル付きデータの不適切な量によって特徴付けられる、生物医学的な画像処理タスクにおいて最も重要なものである。
インユース技術は、強度変換や弾性変形から、既存のデータポイントを線形に組み合わせて新しいものを作るまで様々である。
本研究では,離散コサイン変換とウェーブレット変換を用いて,スペクトルを用いたデータ拡張手法を提案する。
嚢胞性線維症患者に対するctテクスチャ解析による肺組織異常検出の試みを実証的に評価した。
実験により,提案手法は既存手法と比較して良好な性能を示した。
提案手法は,従来の手法と組み合わせることで,単純な複製ベースラインに対して,相対的なマイナークラスセグメンテーション性能を44.1%向上させることができる。
関連論文リスト
- Dataset Distillation for Histopathology Image Classification [46.04496989951066]
病理画像データセット(Histo-DD)に適した新しいデータセット蒸留アルゴリズムを提案する。
提案アルゴリズムの有効性を総合的に評価し, パッチレベルとスライドレベルの両方の分類タスクにおいて, 組織学的サンプルを生成する。
論文 参考訳(メタデータ) (2024-08-19T05:53:38Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Rapid hyperspectral photothermal mid-infrared spectroscopic imaging from
sparse data for gynecologic cancer tissue subtyping [3.550171634694342]
ミドル赤外線(Mid-Infrared、MIR)は、ラベルなし、生化学的に定量的な技術である。
この研究は、MIR光熱画像への新しいアプローチを示し、その速度を桁違いに向上させる。
論文 参考訳(メタデータ) (2024-02-28T00:57:35Z) - High-Fidelity Image Synthesis from Pulmonary Nodule Lesion Maps using
Semantic Diffusion Model [10.412300404240751]
肺がんは、長年にわたり、世界中でがん関連の死因の1つとなっている。
ディープラーニング、学習アルゴリズムに基づくコンピュータ支援診断(CAD)モデルは、スクリーニングプロセスを加速することができる。
しかし、堅牢で正確なモデルを開発するには、しばしば高品質なアノテーションを備えた大規模で多様な医療データセットが必要である。
論文 参考訳(メタデータ) (2023-05-02T01:04:22Z) - DACov: A Deeper Analysis of Data Augmentation on the Computed Tomography
Segmentation Problem [0.0]
本稿では,医療画像のセグメンテーション性能向上のためのデータ拡張手法について,より深く分析する。
本稿では,GAN(Generative Adversarial Networks)に基づく新しいデータ拡張手法を提案する。
GANに基づく手法と空間レベルの変換が,この問題における深層モデルの学習を改善する上で最も有望であることを示す。
論文 参考訳(メタデータ) (2023-03-10T13:41:20Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
医用画像セグメンテーションのための新しい学習ベースデータ拡張法を開発した。
本手法では,データ拡張モジュールと後続のセグメンテーションモジュールをエンドツーエンドのトレーニング方法で一貫した損失と,革新的に組み合わせる。
提案法の有効性を検証したCT腎腫瘍分節法について,本法を広範囲に評価した。
論文 参考訳(メタデータ) (2020-02-22T14:10:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。