論文の概要: Deep convolutional neural networks for face and iris presentation attack
detection: Survey and case study
- arxiv url: http://arxiv.org/abs/2004.12040v2
- Date: Wed, 29 Apr 2020 03:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 21:51:40.177371
- Title: Deep convolutional neural networks for face and iris presentation attack
detection: Survey and case study
- Title(参考訳): 顔と虹彩の提示攻撃検出のための深層畳み込みニューラルネットワーク:調査とケーススタディ
- Authors: Yomna Safaa El-Din, Mohamed N. Moustafa, Hani Mahdi
- Abstract要約: 顔PADのクロスデータセット評価は,術式よりも一般化が良好であった。
顔と虹彩の両方の攻撃を検出するために訓練された1つのディープネットワークを提案する。
- 参考スコア(独自算出の注目度): 0.5801044612920815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biometric presentation attack detection is gaining increasing attention.
Users of mobile devices find it more convenient to unlock their smart
applications with finger, face or iris recognition instead of passwords. In
this paper, we survey the approaches presented in the recent literature to
detect face and iris presentation attacks. Specifically, we investigate the
effectiveness of fine tuning very deep convolutional neural networks to the
task of face and iris antispoofing. We compare two different fine tuning
approaches on six publicly available benchmark datasets. Results show the
effectiveness of these deep models in learning discriminative features that can
tell apart real from fake biometric images with very low error rate.
Cross-dataset evaluation on face PAD showed better generalization than state of
the art. We also performed cross-dataset testing on iris PAD datasets in terms
of equal error rate which was not reported in literature before. Additionally,
we propose the use of a single deep network trained to detect both face and
iris attacks. We have not noticed accuracy degradation compared to networks
trained for only one biometric separately. Finally, we analyzed the learned
features by the network, in correlation with the image frequency components, to
justify its prediction decision.
- Abstract(参考訳): バイオメトリック・プレゼンテーションによる攻撃検出が注目されている。
モバイルデバイスのユーザは、パスワードの代わりに指、顔、虹彩認証でスマートアプリケーションをアンロックする方が便利だ。
本稿では,近年の文献で提示された顔と虹彩の提示攻撃の検出手法について検討する。
具体的には、顔と虹彩のアンチスポーフィングのタスクに非常に深い畳み込みニューラルネットワークを微調整する効果について検討する。
6つのベンチマークデータセットに対する2つの異なる微調整手法を比較した。
その結果, 誤り率が非常に低い偽バイオメトリック画像と現実を区別できる識別的特徴の学習において, これらの深層モデルの有効性が示された。
顔PADのクロスデータセット評価は,術式よりも一般化が良好であった。
また,irispadデータセットに対して,従来文献では報告されていなかった同等のエラー率でクロスデータセットテストを実施した。
さらに,顔と虹彩の両方の攻撃を検出する訓練を施した1つのディープネットワークを提案する。
バイオメトリックスを個別にトレーニングしたネットワークと比較して,精度の劣化には気付いていない。
最後に,ネットワークによる学習特徴を画像周波数成分と相関して解析し,その予測決定を正当化した。
関連論文リスト
- Presentation Attack detection using Wavelet Transform and Deep Residual
Neural Net [5.425986555749844]
生体計測物質は、いくつかの方法でインポスタによって騙されることがある。
バイオメトリック画像、特に虹彩と顔は、異なる提示攻撃に対して脆弱である。
本研究では,生体情報アクセス制御システムにおけるプレゼンテーションアタックの軽減にディープラーニングアプローチを適用した。
論文 参考訳(メタデータ) (2023-11-23T20:21:49Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
顔認識モデルは、トレーニングデータがテストデータと異なる場合、しばしば退化する。
本稿では,新たな敵情報ネットワーク(AIN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T02:14:11Z) - Unfolding Local Growth Rate Estimates for (Almost) Perfect Adversarial
Detection [22.99930028876662]
畳み込みニューラルネットワーク(CNN)は、多くの知覚的タスクにおける最先端のソリューションを定義する。
現在のCNNアプローチは、システムを騙すために特別に作られた入力の敵の摂動に対して脆弱なままである。
本稿では,ネットワークの局所固有次元(LID)と敵攻撃の関係について,最近の知見を生かした,シンプルで軽量な検出器を提案する。
論文 参考訳(メタデータ) (2022-12-13T17:51:32Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
最先端の一般的な顔認識モデルは、隠蔽された顔画像に対してうまく一般化しない。
本稿では,1つのエンドツーエンドのディープニューラルネットワークに基づいて,オクルージョンに頑健な新しい顔認識手法を提案する。
我々のアプローチは、深い畳み込みニューラルネットワークから破損した特徴を発見し、動的に学習されたマスクによってそれらをきれいにする。
論文 参考訳(メタデータ) (2021-08-21T09:08:41Z) - Improving DeepFake Detection Using Dynamic Face Augmentation [0.8793721044482612]
ほとんどの公開可能なDeepFake検出データセットには、限られたバリエーションがある。
ディープニューラルネットワークは、DeepFakeコンテンツの操作機能を検出するための学習ではなく、顔の特徴にオーバーフィットする傾向があります。
DeepFake検出を改善するために、CNN(Convolutional Neural Networks)をトレーニングするためのデータ拡張方法であるFace-Cutoutを紹介します。
論文 参考訳(メタデータ) (2021-02-18T20:25:45Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
プレゼンテーションアタックは、バイオメトリックなモダリティの大部分に大きな課題をもたらす。
本稿では,汎用的な深層学習に基づくプレゼンテーション攻撃検出ネットワークであるMVANetを提案する。
これはハイブリッドアルゴリズムの単純さと成功、あるいは複数の検出ネットワークの融合にインスパイアされている。
論文 参考訳(メタデータ) (2020-10-25T22:42:27Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - Miss the Point: Targeted Adversarial Attack on Multiple Landmark
Detection [29.83857022733448]
本稿では,CNNをベースとしたモデルが,逆方向の摂動に対する複数のランドマーク検出に与える影響を初めて検討した。
本稿では,複数のランドマーク検出における最先端モデルに対する適応的反復FGSM攻撃を提案する。
論文 参考訳(メタデータ) (2020-07-10T07:58:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。