Memory-efficient training with streaming dimensionality reduction
- URL: http://arxiv.org/abs/2004.12041v1
- Date: Sat, 25 Apr 2020 02:13:43 GMT
- Title: Memory-efficient training with streaming dimensionality reduction
- Authors: Siyuan Huang, Brian D. Hoskins, Matthew W. Daniels, Mark D. Stiles,
Gina C. Adam
- Abstract summary: We introduce streaming batch component analysis as an update algorithm for Deep Neural Network training.
We show that streaming batch component analysis can effectively train convolutional neural networks on a variety of common datasets.
- Score: 14.198224213972173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The movement of large quantities of data during the training of a Deep Neural
Network presents immense challenges for machine learning workloads. To minimize
this overhead, especially on the movement and calculation of gradient
information, we introduce streaming batch principal component analysis as an
update algorithm. Streaming batch principal component analysis uses stochastic
power iterations to generate a stochastic k-rank approximation of the network
gradient. We demonstrate that the low rank updates produced by streaming batch
principal component analysis can effectively train convolutional neural
networks on a variety of common datasets, with performance comparable to
standard mini batch gradient descent. These results can lead to both
improvements in the design of application specific integrated circuits for deep
learning and in the speed of synchronization of machine learning models trained
with data parallelism.
Related papers
- Training Hamiltonian neural networks without backpropagation [0.0]
We present a backpropagation-free algorithm to accelerate the training of neural networks for approximating Hamiltonian systems.
We show that our approach is more than 100 times faster with CPUs than the traditionally trained Hamiltonian Neural Networks.
arXiv Detail & Related papers (2024-11-26T15:22:30Z) - From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
We propose a simulation-free framework for training neural ordinary differential equations (NODEs)
We employ the Fourier analysis to estimate temporal and potential high-order spatial gradients from noisy observational data.
Our approach outperforms state-of-the-art methods in terms of training time, dynamics prediction, and robustness.
arXiv Detail & Related papers (2024-05-19T13:15:23Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
In this study, we introduce a class of network models that have a small memory footprint in terms of their computational graphs.
We show state-of-the-art results for semantic segmentation on the CamVid and Cityscapes datasets.
arXiv Detail & Related papers (2021-01-21T15:56:29Z) - Continuous-in-Depth Neural Networks [107.47887213490134]
We first show that ResNets fail to be meaningful dynamical in this richer sense.
We then demonstrate that neural network models can learn to represent continuous dynamical systems.
We introduce ContinuousNet as a continuous-in-depth generalization of ResNet architectures.
arXiv Detail & Related papers (2020-08-05T22:54:09Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
We study two factors in neural network training: data parallelism and sparsity.
Despite their promising benefits, understanding of their effects on neural network training remains elusive.
arXiv Detail & Related papers (2020-03-25T10:49:22Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - On transfer learning of neural networks using bi-fidelity data for
uncertainty propagation [0.0]
We explore the application of transfer learning techniques using training data generated from both high- and low-fidelity models.
In the former approach, a neural network model mapping the inputs to the outputs of interest is trained based on the low-fidelity data.
The high-fidelity data is then used to adapt the parameters of the upper layer(s) of the low-fidelity network, or train a simpler neural network to map the output of the low-fidelity network to that of the high-fidelity model.
arXiv Detail & Related papers (2020-02-11T15:56:11Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
Training deep neural networks on large-scale datasets requires significant hardware resources.
Backpropagation, the workhorse for training these networks, is an inherently sequential process that is difficult to parallelize.
We propose a neuro-biologically-plausible alternative to backprop that can be used to train deep networks.
arXiv Detail & Related papers (2020-02-10T16:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.