Learning to Guide Random Search
- URL: http://arxiv.org/abs/2004.12214v1
- Date: Sat, 25 Apr 2020 19:21:14 GMT
- Title: Learning to Guide Random Search
- Authors: Ozan Sener, Vladlen Koltun
- Abstract summary: We consider derivative-free optimization of a high-dimensional function that lies on a latent low-dimensional manifold.
We develop an online learning approach that learns this manifold while performing the optimization.
We empirically evaluate the method on continuous optimization benchmarks and high-dimensional continuous control problems.
- Score: 111.71167792453473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We are interested in derivative-free optimization of high-dimensional
functions. The sample complexity of existing methods is high and depends on
problem dimensionality, unlike the dimensionality-independent rates of
first-order methods. The recent success of deep learning suggests that many
datasets lie on low-dimensional manifolds that can be represented by deep
nonlinear models. We therefore consider derivative-free optimization of a
high-dimensional function that lies on a latent low-dimensional manifold. We
develop an online learning approach that learns this manifold while performing
the optimization. In other words, we jointly learn the manifold and optimize
the function. Our analysis suggests that the presented method significantly
reduces sample complexity. We empirically evaluate the method on continuous
optimization benchmarks and high-dimensional continuous control problems. Our
method achieves significantly lower sample complexity than Augmented Random
Search, Bayesian optimization, covariance matrix adaptation (CMA-ES), and other
derivative-free optimization algorithms.
Related papers
- A Stochastic Approach to Bi-Level Optimization for Hyperparameter Optimization and Meta Learning [74.80956524812714]
We tackle the general differentiable meta learning problem that is ubiquitous in modern deep learning.
These problems are often formalized as Bi-Level optimizations (BLO)
We introduce a novel perspective by turning a given BLO problem into a ii optimization, where the inner loss function becomes a smooth distribution, and the outer loss becomes an expected loss over the inner distribution.
arXiv Detail & Related papers (2024-10-14T12:10:06Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Multistage Stochastic Optimization via Kernels [3.7565501074323224]
We develop a non-parametric, data-driven, tractable approach for solving multistage optimization problems.
We show that the proposed method produces decision rules with near-optimal average performance.
arXiv Detail & Related papers (2023-03-11T23:19:32Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Extrinsic Bayesian Optimizations on Manifolds [1.3477333339913569]
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on Euclid manifold.
Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensionalean space.
This leads to efficient and scalable algorithms for optimization over complex manifold.
arXiv Detail & Related papers (2022-12-21T06:10:12Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - High dimensional Bayesian Optimization Algorithm for Complex System in
Time Series [1.9371782627708491]
This paper presents a novel high dimensional Bayesian optimization algorithm.
Based on the time-dependent or dimension-dependent characteristics of the model, the proposed algorithm can reduce the dimension evenly.
To increase the final accuracy of the optimal solution, the proposed algorithm adds a local search based on a series of Adam-based steps at the final stage.
arXiv Detail & Related papers (2021-08-04T21:21:17Z) - High-Dimensional Bayesian Optimization via Tree-Structured Additive
Models [40.497123136157946]
We consider generalized additive models in which low-dimensional functions with overlapping subsets of variables are composed to model a high-dimensional target function.
Our goal is to lower the computational resources required and facilitate faster model learning.
We demonstrate and discuss the efficacy of our approach via a range of experiments on synthetic functions and real-world datasets.
arXiv Detail & Related papers (2020-12-24T03:56:44Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z) - Sample complexity and effective dimension for regression on manifolds [13.774258153124205]
We consider the theory of regression on a manifold using kernel reproducing Hilbert space methods.
We show that certain spaces of smooth functions on a manifold are effectively finite-dimensional, with a complexity that scales according to the manifold dimension.
arXiv Detail & Related papers (2020-06-13T14:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.