An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization
- URL: http://arxiv.org/abs/2210.16099v1
- Date: Thu, 27 Oct 2022 01:58:10 GMT
- Title: An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization
- Authors: Elvin Lo and Pin-Yu Chen
- Abstract summary: We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
- Score: 78.36413169647408
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecule optimization is an important problem in chemical discovery and has
been approached using many techniques, including generative modeling,
reinforcement learning, genetic algorithms, and much more. Recent work has also
applied zeroth-order (ZO) optimization, a subset of gradient-free optimization
that solves problems similarly to gradient-based methods, for optimizing latent
vector representations from an autoencoder. In this paper, we study the
effectiveness of various ZO optimization methods for optimizing molecular
objectives, which are characterized by variable smoothness, infrequent optima,
and other challenges. We provide insights on the robustness of various ZO
optimizers in this setting, show the advantages of ZO sign-based gradient
descent (ZO-signGD), discuss how ZO optimization can be used practically in
realistic discovery tasks, and demonstrate the potential effectiveness of ZO
optimization methods on widely used benchmark tasks from the Guacamol suite.
Code is available at: https://github.com/IBM/QMO-bench.
Related papers
- Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs.
We perform objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention.
Experiments demonstrate the state-of-the-art performance of DiscoPOP, a novel algorithm that adaptively blends logistic and exponential losses.
arXiv Detail & Related papers (2024-06-12T16:58:41Z) - Dynamic Anisotropic Smoothing for Noisy Derivative-Free Optimization [0.0]
We propose a novel algorithm that extends the methods of ball smoothing and Gaussian smoothing for noisy derivative-free optimization.
The algorithm dynamically adapts the shape of the smoothing kernel to approximate the Hessian of the objective function around a local optimum.
arXiv Detail & Related papers (2024-05-02T21:04:20Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Extrinsic Bayesian Optimizations on Manifolds [1.3477333339913569]
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on Euclid manifold.
Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensionalean space.
This leads to efficient and scalable algorithms for optimization over complex manifold.
arXiv Detail & Related papers (2022-12-21T06:10:12Z) - Multi-Agent Deep Reinforcement Learning in Vehicular OCC [14.685237010856953]
We introduce a spectral efficiency optimization approach in vehicular OCC.
We model the optimization problem as a Markov decision process (MDP) to enable the use of solutions that can be applied online.
We verify the performance of our proposed scheme through extensive simulations and compare it with various variants of our approach and a random method.
arXiv Detail & Related papers (2022-05-05T14:25:54Z) - Bayesian Variational Optimization for Combinatorial Spaces [0.0]
Broad applications include the study of molecules, proteins, DNA, device structures and quantum circuit designs.
A on optimization over categorical spaces is needed to find optimal or pareto-optimal solutions.
We introduce a variational Bayesian optimization method that combines variational optimization and continuous relaxations.
arXiv Detail & Related papers (2020-11-03T20:56:13Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO optimization iteratively performs three major steps: gradient estimation, descent direction, and solution update.
We demonstrate promising applications of ZO optimization, such as evaluating and generating explanations from black-box deep learning models, and efficient online sensor management.
arXiv Detail & Related papers (2020-06-11T06:50:35Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.