論文の概要: Joint Inference of States, Robot Knowledge, and Human (False-)Beliefs
- arxiv url: http://arxiv.org/abs/2004.12248v1
- Date: Sat, 25 Apr 2020 23:02:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-09 22:09:57.886170
- Title: Joint Inference of States, Robot Knowledge, and Human (False-)Beliefs
- Title(参考訳): 状態・ロボット知識・人間(false-)の合同推論
- Authors: Tao Yuan, Hangxin Liu, Lifeng Fan, Zilong Zheng, Tao Gao, Yixin Zhu,
Song-Chun Zhu
- Abstract要約: 本稿では,人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)・人間(時間的)の認知能力が,ロボットとの相互作用にどのように影響するかを理解するために,対象状態,ロボット知識,人間(時間的)の認知能力の表現にグラフィカルモデルを採用することを提案する。
推論アルゴリズムは、複数のビューにまたがる全てのロボットから個別のpgを融合し、単一のビューから発生したエラーを克服するより効果的な推論能力を得る。
- 参考スコア(独自算出の注目度): 90.20235972293801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aiming to understand how human (false-)belief--a core socio-cognitive
ability--would affect human interactions with robots, this paper proposes to
adopt a graphical model to unify the representation of object states, robot
knowledge, and human (false-)beliefs. Specifically, a parse graph (pg) is
learned from a single-view spatiotemporal parsing by aggregating various object
states along the time; such a learned representation is accumulated as the
robot's knowledge. An inference algorithm is derived to fuse individual pg from
all robots across multi-views into a joint pg, which affords more effective
reasoning and inference capability to overcome the errors originated from a
single view. In the experiments, through the joint inference over pg-s, the
system correctly recognizes human (false-)belief in various settings and
achieves better cross-view accuracy on a challenging small object tracking
dataset.
- Abstract(参考訳): 本稿では,人間(false-)belief--a core socio-cognitive ability-wouldがロボットと人間のインタラクションに与える影響を理解することを目的として,対象状態,ロボット知識,人間(false-)beliefsの表現を統一するグラフィカルモデルを提案する。
具体的には、パースグラフ(pg)を、時間に沿って様々な対象状態を集約することにより、一視点の時空間解析から学習し、ロボットの知識として学習表現を蓄積する。
推論アルゴリズムは、複数のビューにまたがる全てのロボットから個別のpgを融合し、単一のビューから発生したエラーを克服するより効果的な推論能力と推論能力を得る。
実験では、pg-sに対する共同推論により、様々な環境での人間(偽)の信頼性を正しく認識し、挑戦的な小さなオブジェクト追跡データセット上でのクロスビュー精度を向上する。
関連論文リスト
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - A Multi-Modal Explainability Approach for Human-Aware Robots in Multi-Party Conversation [39.87346821309096]
本稿では,従来のSOTAと比較して性能が向上したアドレス推定モデルを提案する。
また、上記のアーキテクチャに説明可能性と透明性を組み込むいくつかの方法を提案する。
論文 参考訳(メタデータ) (2024-05-20T13:09:32Z) - Teaching Unknown Objects by Leveraging Human Gaze and Augmented Reality
in Human-Robot Interaction [3.1473798197405953]
この論文は、人間-ロボットインタラクション(HRI)の文脈で未知の物体を教えることを目的としている。
視線追跡と拡張現実(Augmented Reality)を組み合わせることで、人間の教師がロボットとコミュニケーションできる強力なシナジーが生まれました。
ロボットの物体検出能力は、広範囲なデータセットで訓練された最先端の物体検出器に匹敵する性能を示した。
論文 参考訳(メタデータ) (2023-12-12T11:34:43Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Reasoning about Counterfactuals to Improve Human Inverse Reinforcement
Learning [5.072077366588174]
人間は自然に、観察可能な行動について推論することで、他のエージェントの信念や欲求を推測する。
我々は,ロボットの意思決定に対する学習者の現在の理解を,人間のIRLモデルに組み込むことを提案する。
また,人間が見えない環境下でのロボットの動作を予測しにくいことを推定するための新しい尺度を提案する。
論文 参考訳(メタデータ) (2022-03-03T17:06:37Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATEは、自然言語で人間と対話し、特定の物体をクラッタで把握するロボットシステムである。
我々は、物体検出、視覚的接地、質問生成、OBR検出と把握のために、別々のニューラルネットワークを訓練する。
我々は、学習したニューラルネットワークモジュールを統合する、部分的に観測可能なマルコフ決定プロセス(POMDP)を構築します。
論文 参考訳(メタデータ) (2021-08-25T07:35:21Z) - Learning User-Preferred Mappings for Intuitive Robot Control [28.183430654834307]
そこで本研究では,ロボットのクエリから,人間の好みのマッピングや事前認識のマッピングを学習する手法を提案する。
我々は、人間の地図に強い先行性があることを認識して、このアプローチをデータ効率良くする。
シミュレーションおよび実験結果から,入力とロボット動作のマッピングを学習することで,客観的および主観的パフォーマンスが向上することが示唆された。
論文 参考訳(メタデータ) (2020-07-22T18:54:35Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。