Approximate Solutions to the Klein-Fock-Gordon Equation for the sum of
Coulomb and Ring-Shaped like potentials
- URL: http://arxiv.org/abs/2004.12645v1
- Date: Mon, 27 Apr 2020 08:49:10 GMT
- Title: Approximate Solutions to the Klein-Fock-Gordon Equation for the sum of
Coulomb and Ring-Shaped like potentials
- Authors: Sh. M. Nagiyev, A. I. Ahmadov, and V. A. Tarverdiyeva
- Abstract summary: We consider the quantum mechanical problem of the motion of a spinless charged relativistic particle with mass$M$.
It is shown that the system under consideration has both a discrete at $left|Eright|Mc2 $ and a continuous at $left|Eright|>Mc2 $ energy spectra.
It is also shown that relativistic expressions for wave functions, energy spectra and group generators in the limit $ctoinfty $ go over into the corresponding expressions for the nonrelativistic problem.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the quantum mechanical problem of the motion of a spinless
charged relativistic particle with mass$M$, described by the Klein-Fock-Gordon
equation with equal scalar $S(\vec{r})$ and vector $V(\vec{r})$ Coulomb plus
ring-shaped potentials. It is shown that the system under consideration has
both a discrete at $\left|E\right|<Mc^{2} $ and a continuous at
$\left|E\right|>Mc^{2} $ energy spectra. We find the analytical expressions for
the corresponding complete wave functions. A dynamical symmetry group $SU(1,1)$
for the radial wave equation of motion is constructed. The algebra of
generators of this group makes it possible to find energy spectra in a purely
algebraic way. It is also shown that relativistic expressions for wave
functions, energy spectra and group generators in the limit $c\to \infty $ go
over into the corresponding expressions for the nonrelativistic problem.
Related papers
- Klein-Gordon oscillators and Bergman spaces [55.2480439325792]
We consider classical and quantum dynamics of relativistic oscillator in Minkowski space $mathbbR3,1$.
The general solution of this model is given by functions from the weighted Bergman space of square-integrable holomorphic (for particles) and antiholomorphic functions on the K"ahler-Einstein manifold $Z_6$.
arXiv Detail & Related papers (2024-05-23T09:20:56Z) - Quantum charges of harmonic oscillators [55.2480439325792]
We show that the energy eigenfunctions $psi_n$ with $nge 1$ are complex coordinates on orbifolds $mathbbR2/mathbbZ_n$.
We also discuss "antioscillators" with opposite quantum charges and the same positive energy.
arXiv Detail & Related papers (2024-04-02T09:16:18Z) - Quantum connection, charges and virtual particles [65.268245109828]
A quantum bundle $L_hbar$ is endowed with a connection $A_hbar$ and its sections are standard wave functions $psi$ obeying the Schr"odinger equation.
We will lift the bundles $L_Cpm$ and connection $A_hbar$ on them to the relativistic phase space $T*R3,1$ and couple them to the Dirac spinor bundle describing both particles and antiparticles.
arXiv Detail & Related papers (2023-10-10T10:27:09Z) - One-dimensional pseudoharmonic oscillator: classical remarks and
quantum-information theory [0.0]
Motion of a potential that is a combination of positive quadratic and inverse quadratic functions of the position is considered.
The dependence on the particle energy and the factor $mathfraka$ describing a relative strength of its constituents is described.
arXiv Detail & Related papers (2023-04-13T11:50:51Z) - On parametric resonance in the laser action [91.3755431537592]
We consider the selfconsistent semiclassical Maxwell--Schr"odinger system for the solid state laser.
We introduce the corresponding Poincar'e map $P$ and consider the differential $DP(Y0)$ at suitable stationary state $Y0$.
arXiv Detail & Related papers (2022-08-22T09:43:57Z) - Energy-independent complex single $P$-waves $NN$ potential from
Marchenko equation [0.0]
We apply an isosceles triangular-pulse function set for the Marchenko equation input kernel expansion in a separable form.
We show that in the general case of a single partial wave, a linear expression of the input kernel is obtained.
We show that energy-independent complex partial potentials describe these data for single $P$-waves.
arXiv Detail & Related papers (2022-04-02T22:13:44Z) - Energy spectrum of massive Dirac particles in gapped graphene with Morse
potential [0.0]
We study the massive Dirac equation with the presence of the Morse potential in polar coordinate.
The Dirac Hamiltonian is written as two second-order differential equations in terms of two spinor wavefunctions.
We investigate the graphene band structure by a linear dispersion relation which creates an energy gap in the Dirac points called gapped graphene.
arXiv Detail & Related papers (2021-04-14T09:26:56Z) - On connection between perturbation theory and semiclassical expansion in
quantum mechanics [0.0]
Perturbation Theory in powers of the coupling constant $g$ and the semiclassical expansion in powers of $hbar1/2$ for the energies coincide.
The equations which govern dynamics in two spaces, the Riccati-Bloch equation and the Generalized Bloch equation, respectively, are presented.
arXiv Detail & Related papers (2021-02-09T03:13:56Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Anharmonic oscillator: a solution [77.34726150561087]
The dynamics in $x$-space and in $(gx)-space corresponds to the same energy spectrum with effective coupling constant $hbar g2$.
A 2-classical generalization leads to a uniform approximation of the wavefunction in $x$-space with unprecedented accuracy.
arXiv Detail & Related papers (2020-11-29T22:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.