Integration of spectator qubits into quantum computer architectures for
hardware tuneup and calibration
- URL: http://arxiv.org/abs/2004.13059v1
- Date: Mon, 27 Apr 2020 18:00:33 GMT
- Title: Integration of spectator qubits into quantum computer architectures for
hardware tuneup and calibration
- Authors: Riddhi S. Gupta, Luke C.G. Govia and Michael J. Biercuk
- Abstract summary: We focus on the challenge of measuring spatially inhomogeneous quasi-static calibration errors using spectator qubits.
We introduce a novel architectural concept for such spectator qubits: arranging them spatially according to prescriptions from optimal 2D approximation theory.
We show that this insight allows for efficient reconstruction of inhomogeneities in qubit calibration.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performing efficient quantum computer tuneup and calibration is essential for
growth in system complexity. In this work we explore the link between
facilitating such capabilities and the underlying architecture of the physical
hardware. We focus on the specific challenge of measuring (``mapping'')
spatially inhomogeneous quasi-static calibration errors using spectator qubits
dedicated to the task of sensing and calibration. We introduce a novel
architectural concept for such spectator qubits: arranging them spatially
according to prescriptions from optimal 2D approximation theory. We show that
this insight allows for efficient reconstruction of inhomogeneities in qubit
calibration, focusing on the specific example of frequency errors which may
arise from fabrication variances or ambient magnetic fields. Our results
demonstrate that optimal interpolation techniques display near optimal
error-scaling in cases where the measured characteristic (here the qubit
frequency) varies smoothly, and we probe the limits of these benefits as a
function of measurement uncertainty. For more complex spatial variations, we
demonstrate that the NMQA formalism for adaptive measurement and noise
filtering outperforms optimal interpolation techniques in isolation, and
crucially, can be combined with insights from optimal interpolation theory to
produce a general purpose protocol.
Related papers
- Superconducting processor design optimization for quantum error correction performance [3.6723640056915436]
We introduce a multi-level simulation framework that spans both Hamiltonian and quantum error correction levels.
This toolset aids in design optimization, tailored to specific objectives like quantum memory performance.
We exemplify our approach through the multi-path coupling scheme of fluxonium qubits.
arXiv Detail & Related papers (2023-12-07T10:13:08Z) - Fast reconstruction of programmable integrated interferometers [0.0]
We present a novel efficient algorithm based on linear algebra only, which does not use computationally expensive optimization procedures.
We show that this approach makes it possible to perform fast and accurate characterization of high-dimensional programmable integrated interferometers.
arXiv Detail & Related papers (2023-07-07T14:48:38Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Fulfilling entanglement's optimal advantage via converting correlation
to coherence [0.966840768820136]
Entanglement boosts performance limits in sensing and communication.
We propose a conversion module to capture and transform the quantum correlation to coherent quadrature displacement.
Our module provides a paradigm of processing noisy quantum correlations for near-term implementation.
arXiv Detail & Related papers (2022-07-14T02:02:52Z) - Fast Quantum Calibration using Bayesian Optimization with State
Parameter Estimator for Non-Markovian Environment [11.710177724383954]
We propose a real-time optimal estimator of qubit states, which utilizes weak measurements and Bayesian optimization to find the optimal control pulses for gate design.
Our numerical results demonstrate a significant reduction in the calibration process, obtaining a high gate fidelity.
arXiv Detail & Related papers (2022-05-25T17:31:15Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Hybrid quantum-classical approach to enhanced quantum metrology [13.1056933958821]
We introduce adjustable controls into the encoding process and then utilize a hybrid quantum-classical approach to automatically optimize the controls online.
We report the first experimental demonstration of this promising scheme for the task of finding optimal probes for frequency estimation on a nuclear magnetic resonance (NMR) processor.
arXiv Detail & Related papers (2020-08-14T17:05:03Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.