Superconducting processor design optimization for quantum error correction performance
- URL: http://arxiv.org/abs/2312.04186v2
- Date: Wed, 20 Mar 2024 11:58:26 GMT
- Title: Superconducting processor design optimization for quantum error correction performance
- Authors: Xiaotong Ni, Ziang Wang, Rui Chao, Jianxin Chen,
- Abstract summary: We introduce a multi-level simulation framework that spans both Hamiltonian and quantum error correction levels.
This toolset aids in design optimization, tailored to specific objectives like quantum memory performance.
We exemplify our approach through the multi-path coupling scheme of fluxonium qubits.
- Score: 3.6723640056915436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the quest for fault-tolerant quantum computation using superconducting processors, accurate performance assessment and continuous design optimization stands at the forefront. To facilitate both meticulous simulation and streamlined design optimization, we introduce a multi-level simulation framework that spans both Hamiltonian and quantum error correction levels, and is equipped with the capability to compute gradients efficiently. This toolset aids in design optimization, tailored to specific objectives like quantum memory performance. Within our framework, we investigate the often-neglected spatially correlated unitary errors, highlighting their significant impact on logical error rates. We exemplify our approach through the multi-path coupling scheme of fluxonium qubits.
Related papers
- A General Framework for Gradient-Based Optimization of Superconducting Quantum Circuits using Qubit Discovery as a Case Study [0.19528996680336308]
We present a comprehensive framework for the gradient-based optimization of superconducting quantum circuits.
We apply this framework to the qubit discovery problem, demonstrating its effectiveness in identifying qubit designs with superior performance metrics.
arXiv Detail & Related papers (2024-08-22T19:46:50Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Designing Quantum Annealing Schedules using Bayesian Optimization [0.0]
We find that Bayesian optimization is able to identify schedules resulting in fidelities several orders of magnitude better than standard protocols.
Our scheme can help improve the design of hybrid quantum algorithms for hard optimization problems.
arXiv Detail & Related papers (2023-05-22T18:00:03Z) - Optimization Applications as Quantum Performance Benchmarks [0.0]
Combinatorial optimization is anticipated to be one of the primary use cases for quantum computation in the coming years.
Inspired by existing methods to characterize classical optimization algorithms, we analyze the solution quality obtained by solving Max-Cut problems.
This is used to guide the development of an advanced benchmarking framework for quantum computers.
arXiv Detail & Related papers (2023-02-05T01:56:06Z) - Error Mitigation for Quantum Approximate Optimization [0.0]
We show how a redundant encoding of logical variables can be exploited to mitigate errors in quantum optimization algorithms.
In the specific context of the quantum approximate optimization algorithm (QAOA), we show that errors can be significantly mitigated by appropriately modifying the objective cost function.
arXiv Detail & Related papers (2023-01-12T14:13:06Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Machine Learning Framework for Quantum Sampling of Highly-Constrained,
Continuous Optimization Problems [101.18253437732933]
We develop a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate unconstrained binary optimization problems.
We showcase the framework's performance on two inverse design problems by optimizing thermal emitter topologies for thermophotovoltaic applications and (ii) diffractive meta-gratings for highly efficient beam steering.
arXiv Detail & Related papers (2021-05-06T02:22:23Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.