論文の概要: Private Dataset Generation Using Privacy Preserving Collaborative
Learning
- arxiv url: http://arxiv.org/abs/2004.13598v1
- Date: Tue, 28 Apr 2020 15:35:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 22:43:31.917522
- Title: Private Dataset Generation Using Privacy Preserving Collaborative
Learning
- Title(参考訳): プライバシ保護協調学習を用いたプライベートデータセット生成
- Authors: Amit Chaulwar
- Abstract要約: この研究は、エッジで機械学習モデルをトレーニングするためのプライバシ保護のFedNNフレームワークを導入している。
MNISTデータセットを用いたシミュレーション結果は,フレームワークの有効性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: With increasing usage of deep learning algorithms in many application, new
research questions related to privacy and adversarial attacks are emerging.
However, the deep learning algorithm improvement needs more and more data to be
shared within research community. Methodologies like federated learning,
differential privacy, additive secret sharing provides a way to train machine
learning models on edge without moving the data from the edge. However, it is
very computationally intensive and prone to adversarial attacks. Therefore,
this work introduces a privacy preserving FedCollabNN framework for training
machine learning models at edge, which is computationally efficient and robust
against adversarial attacks. The simulation results using MNIST dataset
indicates the effectiveness of the framework.
- Abstract(参考訳): 多くのアプリケーションにおけるディープラーニングアルゴリズムの利用の増加に伴い、プライバシや敵攻撃に関する新たな研究の疑問が浮上している。
しかし、ディープラーニングアルゴリズムの改善には、研究コミュニティ内で共有されるデータが増える必要がある。
フェデレーション学習、ディファレンシャルプライバシ、アダプティブシークレット共有といった方法論は、エッジからデータを移動せずにエッジ上でマシンラーニングモデルをトレーニングする方法を提供する。
しかし、非常に計算集約的であり、敵の攻撃を受けやすい。
そこで本研究では,エッジで機械学習モデルをトレーニングするためのプライバシ保護フレームワークであるFedCollabNNを導入する。
MNISTデータセットを用いたシミュレーション結果は,フレームワークの有効性を示す。
関連論文リスト
- Game-Theoretic Machine Unlearning: Mitigating Extra Privacy Leakage [12.737028324709609]
最近の法律では、要求されたデータとその影響を訓練されたモデルから取り除くことが義務付けられている。
本研究では,非学習性能とプライバシ保護の競合関係をシミュレートするゲーム理論マシンアンラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-06T13:47:04Z) - Locally Differentially Private Gradient Tracking for Distributed Online
Learning over Directed Graphs [2.1271873498506038]
本稿では,局所的に個人差分な勾配追跡に基づく分散オンライン学習アルゴリズムを提案する。
提案アルゴリズムは,厳密な局所差分プライバシーを確保しつつ,平均二乗を最適解に収束させることを証明した。
論文 参考訳(メタデータ) (2023-10-24T18:15:25Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
データリリースフレームワークである3A(Approximate, Adapt, Anonymize)を導入し、機械学習のデータユーティリティを最大化する。
本稿では,実データセットと民生データセットでトレーニングしたモデルの性能指標の相違が最小限に抑えられることを示す実験的な証拠を示す。
論文 参考訳(メタデータ) (2023-07-04T18:37:11Z) - Towards Robust Dataset Learning [90.2590325441068]
本稿では,頑健なデータセット学習問題を定式化するための三段階最適化法を提案する。
ロバストな特徴と非ロバストな特徴を特徴付ける抽象モデルの下で,提案手法はロバストなデータセットを確実に学習する。
論文 参考訳(メタデータ) (2022-11-19T17:06:10Z) - Homomorphic Encryption and Federated Learning based Privacy-Preserving
CNN Training: COVID-19 Detection Use-Case [0.41998444721319217]
本稿では、同相暗号を用いた医療データのためのプライバシー保護フェデレーション学習アルゴリズムを提案する。
提案アルゴリズムはセキュアなマルチパーティ計算プロトコルを用いて,ディープラーニングモデルを敵から保護する。
論文 参考訳(メタデータ) (2022-04-16T08:38:35Z) - On Deep Learning with Label Differential Privacy [54.45348348861426]
ラベルは機密性があり、保護されるべきであるとするマルチクラス分類について検討する。
本稿では,ラベル差分プライバシを用いたディープニューラルネットワークのトレーニングアルゴリズムを提案し,いくつかのデータセットで評価を行う。
論文 参考訳(メタデータ) (2021-02-11T15:09:06Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z) - TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework
for Deep Learning with Anonymized Intermediate Representations [49.20701800683092]
本稿では,匿名化中間表現を用いたタスク非依存型プライバシ参照データクラウドソーシングフレームワークTIPRDCを提案する。
このフレームワークの目的は、中間表現からプライバシー情報を隠蔽できる機能抽出器を学習することであり、データコレクターの生データに埋め込まれた元の情報を最大限に保持し、未知の学習タスクを達成することである。
論文 参考訳(メタデータ) (2020-05-23T06:21:26Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
フェデレートラーニング(FL)は、データを有用なモデルにトレーニングしながら、モバイル端末(MT)からプライベートデータを保存することができる。
情報理論の観点からは、MTがアップロードした共有モデルから、好奇心の強いサーバがプライベートな情報を推測することが可能である。
サーバにアップロードする前に、共有モデルに人工ノイズを加えることで、ユーザレベルの差分プライバシー(UDP)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-29T10:13:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。