論文の概要: Fine-tuning Multi-hop Question Answering with Hierarchical Graph Network
- arxiv url: http://arxiv.org/abs/2004.13821v3
- Date: Sat, 27 Aug 2022 10:58:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-11 17:27:06.307283
- Title: Fine-tuning Multi-hop Question Answering with Hierarchical Graph Network
- Title(参考訳): 階層グラフネットワークを用いたファインチューニング型マルチホップ質問応答
- Authors: Guanming Xiong
- Abstract要約: マルチホップ質問応答のための2段階モデルを提案する。
第一段階は階層グラフネットワークであり、マルチホップ問題を推論するために使用される。
第2段階は、言語モデルの微調整タスクである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a two stage model for multi-hop question answering.
The first stage is a hierarchical graph network, which is used to reason over
multi-hop question and is capable to capture different levels of granularity
using the nature structure(i.e., paragraphs, questions, sentences and entities)
of documents. The reasoning process is convert to node classify task(i.e.,
paragraph nodes and sentences nodes). The second stage is a language model
fine-tuning task. In a word, stage one use graph neural network to select and
concatenate support sentences as one paragraph, and stage two find the answer
span in language model fine-tuning paradigm.
- Abstract(参考訳): 本稿では,マルチホップ質問応答のための2段階モデルを提案する。
第1段階は階層的なグラフネットワークであり、マルチホップ質問を推論するために使用され、文書の性質構造(段落、質問、文、実体)を用いて異なるレベルの粒度を捉えることができる。
推論プロセスは、ノード分類タスク(すなわち、節ノードと文ノード)に変換される。
第2段階は言語モデルの微調整作業である。
一言で言えば、ステージ1はグラフニューラルネットワークを使用してサポート文を1段落として選択・結合し、ステージ2は言語モデルの微調整パラダイムで回答スパンを見つける。
関連論文リスト
- Single Sequence Prediction over Reasoning Graphs for Multi-hop QA [8.442412179333205]
局所推論グラフ(モデル)フットノートコード/モデル上での単一シーケンス予測手法を提案する。
グラフニューラルネットワークを用いて、このグラフ構造を符号化し、結果の表現をモデルのエンティティ表現に融合する。
実験の結果, 正確なマッチング/F1のスコアと, 推論経路におけるグラウンドの忠実度は有意に向上した。
論文 参考訳(メタデータ) (2023-07-01T13:15:09Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
汎用知識グラフ(KG)を用いた会話意味解析の課題を,数百万のエンティティと数千のリレーショナルタイプで検討する。
ユーザ発話を実行可能な論理形式にインタラクティブにマッピングできるモデルに焦点を当てる。
論文 参考訳(メタデータ) (2023-05-04T16:04:41Z) - Analyzing Vietnamese Legal Questions Using Deep Neural Networks with
Biaffine Classifiers [3.116035935327534]
我々は深層ニューラルネットワークを用いてベトナムの法的問題から重要な情報を抽出することを提案する。
自然言語で法的疑問が与えられた場合、その疑問に答えるために必要な情報を含む全てのセグメントを抽出することが目的である。
論文 参考訳(メタデータ) (2023-04-27T18:19:24Z) - Graph Attention with Hierarchies for Multi-hop Question Answering [19.398300844233837]
本稿では,HotpotQAに対するSOTA Graph Neural Network(GNN)モデルの拡張について述べる。
HotpotQAの実験は、提案された修正の効率を実証している。
論文 参考訳(メタデータ) (2023-01-27T15:49:50Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - Coarse-grained decomposition and fine-grained interaction for multi-hop
question answering [5.88731657602706]
多くの複雑なクエリはマルチホップ推論を必要とする。
Bi-DAFは通常、複雑な質問における単語の表面意味論のみをキャプチャする。
マルチホップ回答のための新しいモデルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-01-15T06:56:34Z) - Graph-based Multi-hop Reasoning for Long Text Generation [66.64743847850666]
MRGはグラフベースのマルチホップ推論モジュールとパス認識文実現モジュールの2部で構成されている。
従来のブラックボックスモデルとは異なり、MRGはスケルトンパスを明示的に推論し、提案されたモデルがどのように機能するかを説明する説明的なビューを提供する。
論文 参考訳(メタデータ) (2020-09-28T12:47:59Z) - Tag and Correct: Question aware Open Information Extraction with
Two-stage Decoding [73.24783466100686]
質問 オープンIEは質問と通過を入力として受け取り、主題、述語、および1つ以上の議論を含む回答を出力する。
半構造化された答えには2つの利点がある。
一つは、Open IEモデルによるパスから候補回答を抽出し、質問にマッチしてランク付けする抽出方法である。
もう1つは、シーケンスモデルを用いて回答を直接生成する生成方法である。
論文 参考訳(メタデータ) (2020-09-16T00:58:13Z) - Document Modeling with Graph Attention Networks for Multi-grained
Machine Reading Comprehension [127.3341842928421]
Natural Questionsは、新しい挑戦的な機械読解ベンチマークである。
解答は2つあり、長解(典型的には1段落)と短解(長解の内にある1つ以上の実体)である。
既存の方法は、これらの2つのサブタスクをトレーニング中に個別に扱い、依存関係を無視します。
本稿では,文書を階層的にモデル化する多層機械読解フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-12T14:20:09Z) - Multi-Modal Graph Neural Network for Joint Reasoning on Vision and Scene
Text [93.08109196909763]
我々は,新しいVQAアプローチであるMulti-Modal Graph Neural Network (MM-GNN)を提案する。
これはまず3つの部分グラフからなるグラフとして表現され、それぞれ視覚的、意味的、数値的な様相を描いている。
次に3つのアグリゲータを導入し、あるグラフから別のグラフへのメッセージ転送を誘導し、様々なモードでコンテキストを利用する。
論文 参考訳(メタデータ) (2020-03-31T05:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。