Pyramid Attention Networks for Image Restoration
- URL: http://arxiv.org/abs/2004.13824v4
- Date: Wed, 3 Jun 2020 18:47:11 GMT
- Title: Pyramid Attention Networks for Image Restoration
- Authors: Yiqun Mei, Yuchen Fan, Yulun Zhang, Jiahui Yu, Yuqian Zhou, Ding Liu,
Yun Fu, Thomas S. Huang and Humphrey Shi
- Abstract summary: Self-similarity refers to the image prior widely used in image restoration algorithms.
Recent advanced deep convolutional neural network based methods for image restoration do not take full advantage of self-similarities.
We present a novel Pyramid Attention module for image restoration, which captures long-range feature correspondences from a multi-scale feature pyramid.
- Score: 124.34970277136061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-similarity refers to the image prior widely used in image restoration
algorithms that small but similar patterns tend to occur at different locations
and scales. However, recent advanced deep convolutional neural network based
methods for image restoration do not take full advantage of self-similarities
by relying on self-attention neural modules that only process information at
the same scale. To solve this problem, we present a novel Pyramid Attention
module for image restoration, which captures long-range feature correspondences
from a multi-scale feature pyramid. Inspired by the fact that corruptions, such
as noise or compression artifacts, drop drastically at coarser image scales,
our attention module is designed to be able to borrow clean signals from their
"clean" correspondences at the coarser levels. The proposed pyramid attention
module is a generic building block that can be flexibly integrated into various
neural architectures. Its effectiveness is validated through extensive
experiments on multiple image restoration tasks: image denoising, demosaicing,
compression artifact reduction, and super resolution. Without any bells and
whistles, our PANet (pyramid attention module with simple network backbones)
can produce state-of-the-art results with superior accuracy and visual quality.
Our code will be available at
https://github.com/SHI-Labs/Pyramid-Attention-Networks
Related papers
- Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - Accurate Image Restoration with Attention Retractable Transformer [50.05204240159985]
We propose Attention Retractable Transformer (ART) for image restoration.
ART presents both dense and sparse attention modules in the network.
We conduct extensive experiments on image super-resolution, denoising, and JPEG compression artifact reduction tasks.
arXiv Detail & Related papers (2022-10-04T07:35:01Z) - The Devil Is in the Details: Window-based Attention for Image
Compression [58.1577742463617]
Most existing learned image compression models are based on Convolutional Neural Networks (CNNs)
In this paper, we study the effects of multiple kinds of attention mechanisms for local features learning, then introduce a more straightforward yet effective window-based local attention block.
The proposed window-based attention is very flexible which could work as a plug-and-play component to enhance CNN and Transformer models.
arXiv Detail & Related papers (2022-03-16T07:55:49Z) - Restormer: Efficient Transformer for High-Resolution Image Restoration [118.9617735769827]
convolutional neural networks (CNNs) perform well at learning generalizable image priors from large-scale data.
Transformers have shown significant performance gains on natural language and high-level vision tasks.
Our model, named Restoration Transformer (Restormer), achieves state-of-the-art results on several image restoration tasks.
arXiv Detail & Related papers (2021-11-18T18:59:10Z) - Image Compression with Recurrent Neural Network and Generalized Divisive
Normalization [3.0204520109309843]
Deep learning has gained huge attention from the research community and produced promising image reconstruction results.
Recent methods focused on developing deeper and more complex networks, which significantly increased network complexity.
In this paper, two effective novel blocks are developed: analysis and block synthesis that employs the convolution layer and Generalized Divisive Normalization (GDN) in the variable-rate encoder and decoder side.
arXiv Detail & Related papers (2021-09-05T05:31:55Z) - PNEN: Pyramid Non-Local Enhanced Networks [23.17149002568982]
We propose a novel non-local module, Pyramid Non-local Block, to build up connection between every pixel and all remain pixels.
Based on the proposed module, we devise a Pyramid Non-local Enhanced Networks for edge-preserving image smoothing.
We integrate it into two existing methods for image denoising and single image super-resolution, achieving consistently improved performance.
arXiv Detail & Related papers (2020-08-22T03:10:48Z) - Lightweight Modules for Efficient Deep Learning based Image Restoration [20.701733377216932]
We propose several lightweight low-level modules which can be used to create a computationally low cost variant of a given baseline model.
Our results show that proposed networks consistently output visually similar reconstructions compared to full capacity baselines.
arXiv Detail & Related papers (2020-07-11T19:35:00Z) - Neural Sparse Representation for Image Restoration [116.72107034624344]
Inspired by the robustness and efficiency of sparse coding based image restoration models, we investigate the sparsity of neurons in deep networks.
Our method structurally enforces sparsity constraints upon hidden neurons.
Experiments show that sparse representation is crucial in deep neural networks for multiple image restoration tasks.
arXiv Detail & Related papers (2020-06-08T05:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.