Unmanned Aerial Systems for Wildland and Forest Fires
- URL: http://arxiv.org/abs/2004.13883v2
- Date: Fri, 5 Mar 2021 16:33:41 GMT
- Title: Unmanned Aerial Systems for Wildland and Forest Fires
- Authors: Moulay A. Akhloufi, Nicolas A. Castro, Andy Couturier
- Abstract summary: Wildfires represent an important natural risk causing economic losses, human death and important environmental damage.
Research has been conducted towards the development of dedicated solutions for wildland and forest fire assistance and fighting.
Unmanned Aerial Systems (UAS) have proven to be useful due to their maneuverability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wildfires represent an important natural risk causing economic losses, human
death and important environmental damage. In recent years, we witness an
increase in fire intensity and frequency. Research has been conducted towards
the development of dedicated solutions for wildland and forest fire assistance
and fighting. Systems were proposed for the remote detection and tracking of
fires. These systems have shown improvements in the area of efficient data
collection and fire characterization within small scale environments. However,
wildfires cover large areas making some of the proposed ground-based systems
unsuitable for optimal coverage. To tackle this limitation, Unmanned Aerial
Systems (UAS) were proposed. UAS have proven to be useful due to their
maneuverability, allowing for the implementation of remote sensing, allocation
strategies and task planning. They can provide a low-cost alternative for the
prevention, detection and real-time support of firefighting. In this paper we
review previous work related to the use of UAS in wildfires. Onboard sensor
instruments, fire perception algorithms and coordination strategies are
considered. In addition, we present some of the recent frameworks proposing the
use of both aerial vehicles and Unmanned Ground Vehicles (UV) for a more
efficient wildland firefighting strategy at a larger scale.
Related papers
- A Synergistic Approach to Wildfire Prevention and Management Using AI, ML, and 5G Technology in the United States [44.99833362998488]
This research investigates proactive methods for detecting and handling wildfires in the United States.
The specific objective of this research covers proactive detection and prevention of wildfires using advanced technology.
Various methods, such as AI-enabled remote sensing and 5G-based active monitoring, can enhance proactive wildfire detection and management.
arXiv Detail & Related papers (2024-02-27T04:09:30Z) - A comprehensive survey of research towards AI-enabled unmanned aerial
systems in pre-, active-, and post-wildfire management [6.043705525669726]
Wildfires have emerged as one of the most destructive natural disasters worldwide, causing catastrophic losses in both human lives and forest wildlife.
Recently, the use of Artificial Intelligence (AI) in wildfires, propelled by the integration of Unmanned Aerial Vehicles (UAVs) and deep learning models, has created an unprecedented momentum to implement and develop more effective wildfire management.
arXiv Detail & Related papers (2024-01-04T05:09:35Z) - Optimal Wildfire Escape Route Planning for Drones under Dynamic Fire and
Smoke [3.9561033879611944]
The utilization of unmanned aerial vehicles (UAVs) has shown promise in aiding wildfire management efforts.
This work focuses on the development of an optimal wildfire escape route planning system specifically designed for drones.
arXiv Detail & Related papers (2023-12-06T14:30:15Z) - Reinforcement Learning for Wildfire Mitigation in Simulated Disaster
Environments [39.014859667729375]
Wildfires pose a threat to life, property, ecology, cultural heritage, and critical infrastructure.
SimFire is a versatile wildland fire projection simulator designed to generate realistic wildfire scenarios.
SimHarness is a modular agent-based machine learning wrapper capable of automatically generating land management strategies.
arXiv Detail & Related papers (2023-11-27T15:37:05Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Estimating Wildfire Evacuation Decision and Departure Timing Using
Large-Scale GPS Data [5.576893352332638]
This study proposes a new methodology to analyze human behavior during wildfires by leveraging a large-scale GPS dataset.
We found that among all groups of evacuees, self-evacuees and shadow evacuees accounted for more than half of the evacuees during the Kincade Fire.
arXiv Detail & Related papers (2021-09-16T06:40:23Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
We introduce REPlanner, a novel reinforcement learning algorithm inspired by economic transactions to distribute tasks between UAVs.
We formulate the path planning problem as a multi-agent economic game, where agents can cooperate and compete for resources.
As the system computes task distributions via UAV cooperation, it is highly resilient to any change in the swarm size.
arXiv Detail & Related papers (2021-03-03T20:54:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.