A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments
- URL: http://arxiv.org/abs/2107.08834v1
- Date: Mon, 19 Jul 2021 12:54:04 GMT
- Title: A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments
- Authors: Xiaolong Zhu, Fernando Vanegas, Felipe Gonzalez, Conrad Sanderson
- Abstract summary: We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
- Score: 68.31522961125589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of multi-rotor Unmanned Aerial Vehicles (UAVs) for search and rescue
as well as remote sensing is rapidly increasing. Multi-rotor UAVs, however,
have limited endurance. The range of UAV applications can be widened if teams
of multiple UAVs are used. We propose a framework for a team of UAVs to
cooperatively explore and find a target in complex GPS-denied environments with
obstacles. The team of UAVs autonomously navigates, explores, detects, and
finds the target in a cluttered environment with a known map. Examples of such
environments include indoor scenarios, urban or natural canyons, caves, and
tunnels, where the GPS signal is limited or blocked. The framework is based on
a probabilistic decentralised Partially Observable Markov Decision Process
which accounts for the uncertainties in sensing and the environment. The team
can cooperate efficiently, with each UAV sharing only limited processed
observations and their locations during the mission. The system is simulated
using the Robotic Operating System and Gazebo. Performance of the system with
an increasing number of UAVs in several indoor scenarios with obstacles is
tested. Results indicate that the proposed multi-UAV system has improvements in
terms of time-cost, the proportion of search area surveyed, as well as
successful rates for search and rescue missions.
Related papers
- Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning [50.33447711072726]
This paper proposes a deep reinforcement learning-based model for decision-making in multi-role UAV cooperative pursuit-evasion game.
The proposed method enables autonomous decision-making of the UAVs in pursuit-evasion game scenarios.
arXiv Detail & Related papers (2024-11-05T10:45:30Z) - Long-Range Vision-Based UAV-assisted Localization for Unmanned Surface Vehicles [7.384309568198598]
Global positioning system (GPS) has become an indispensable navigation method for field operations with unmanned surface vehicles (USVs) in marine environments.
GPS may not always be available outdoors because it is vulnerable to natural interference and malicious jamming attacks.
We present a novel method that utilizes an Unmanned Aerial Vehicle (UAV) to assist in localizing USVs in restricted marine environments.
arXiv Detail & Related papers (2024-08-21T08:37:37Z) - Anti-Jamming Path Planning Using GCN for Multi-UAV [0.0]
The effectiveness of UAV swarms can be severely compromised by jamming technology.
A novel approach, where UAV swarms leverage collective intelligence to predict jamming areas, is proposed.
A multi-agent control algorithm is then employed to disperse the UAV swarm, avoid jamming, and regroup upon reaching the target.
arXiv Detail & Related papers (2024-03-13T07:28:05Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Evidential Detection and Tracking Collaboration: New Problem, Benchmark
and Algorithm for Robust Anti-UAV System [56.51247807483176]
Unmanned Aerial Vehicles (UAVs) have been widely used in many areas, including transportation, surveillance, and military.
Previous works have simplified such an anti-UAV task as a tracking problem, where prior information of UAVs is always provided.
In this paper, we first formulate a new and practical anti-UAV problem featuring the UAVs perception in complex scenes without prior UAVs information.
arXiv Detail & Related papers (2023-06-27T19:30:23Z) - Advanced Algorithms of Collision Free Navigation and Flocking for
Autonomous UAVs [0.0]
This report contributes towards the state-of-the-art in UAV control for safe autonomous navigation and motion coordination of multi-UAV systems.
The first part of this report deals with single-UAV systems. The complex problem of three-dimensional (3D) collision-free navigation in unknown/dynamic environments is addressed.
The second part of this report addresses safe navigation for multi-UAV systems. Distributed motion coordination methods of multi-UAV systems for flocking and 3D area coverage are developed.
arXiv Detail & Related papers (2021-10-30T03:51:40Z) - Efficient UAV Trajectory-Planning using Economic Reinforcement Learning [65.91405908268662]
We introduce REPlanner, a novel reinforcement learning algorithm inspired by economic transactions to distribute tasks between UAVs.
We formulate the path planning problem as a multi-agent economic game, where agents can cooperate and compete for resources.
As the system computes task distributions via UAV cooperation, it is highly resilient to any change in the swarm size.
arXiv Detail & Related papers (2021-03-03T20:54:19Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Autonomous and cooperative design of the monitor positions for a team of
UAVs to maximize the quantity and quality of detected objects [0.5801044612920815]
This paper tackles the problem of positioning a swarm of UAVs inside a completely unknown terrain.
YOLOv3 and a system to identify duplicate objects of interest were employed to assign a single score to each UAVs' configuration.
A novel navigation algorithm, capable of optimizing the previously defined score, is proposed.
arXiv Detail & Related papers (2020-07-02T16:52:57Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
An emerging problem is to track unauthorized small unmanned aerial vehicles (UAVs) hiding behind buildings.
This paper proposes the idea of a dynamic radar network of UAVs for real-time and high-accuracy tracking of malicious targets.
arXiv Detail & Related papers (2020-01-13T23:23:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.