Video Contents Understanding using Deep Neural Networks
- URL: http://arxiv.org/abs/2004.13959v1
- Date: Wed, 29 Apr 2020 05:18:40 GMT
- Title: Video Contents Understanding using Deep Neural Networks
- Authors: Mohammadhossein Toutiaee, Abbas Keshavarzi, Abolfazl Farahani, John A.
Miller
- Abstract summary: We propose a novel application of Transfer Learning to classify video-frame sequences over multiple classes.
This representation is achieved with the advent of "deep neural network" (DNN)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel application of Transfer Learning to classify video-frame
sequences over multiple classes. This is a pre-weighted model that does not
require to train a fresh CNN. This representation is achieved with the advent
of "deep neural network" (DNN), which is being studied these days by many
researchers. We utilize the classical approaches for video classification task
using object detection techniques for comparison, such as "Google Video
Intelligence API" and this study will run experiments as to how those
architectures would perform in foggy or rainy weather conditions. Experimental
evaluation on video collections shows that the new proposed classifier achieves
superior performance over existing solutions.
Related papers
- Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
The purpose of the study is to analyse and compare the most common machine learning and deep learning techniques used for computer vision 2D object classification tasks.
Firstly, we will present the theoretical background of the Bag of Visual words model and Deep Convolutional Neural Networks (DCNN)
Secondly, we will implement a Bag of Visual Words model, the VGG16 CNN Architecture.
arXiv Detail & Related papers (2022-04-11T11:34:43Z) - Video Content Classification using Deep Learning [0.0]
This paper presents a model that is a combination of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN)
The model can identify the type of video content and classify them into categories such as "Animation, Gaming, natural content, flat content, etc"
arXiv Detail & Related papers (2021-11-27T04:36:17Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
We present a new training scheme that adds noise at multiple stages of an existing neural architecture while simultaneously learning to be robust to this added noise.
This architecture, which we call a Self-Denoising Neural Network (SDNN), can be applied easily to most modern convolutional neural architectures.
arXiv Detail & Related papers (2021-10-26T03:28:36Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer.
Our method uses a dual-objective activation and distance loss, without requiring a generator network nor modifications to the original model.
arXiv Detail & Related papers (2021-01-29T07:46:39Z) - Convolutional Neural Networks for Multispectral Image Cloud Masking [7.812073412066698]
Convolutional neural networks (CNN) have proven to be state of the art methods for many image classification tasks.
We study the use of different CNN architectures for cloud masking of Proba-V multispectral images.
arXiv Detail & Related papers (2020-12-09T21:33:20Z) - Self-supervised Video Representation Learning by Pace Prediction [48.029602040786685]
This paper addresses the problem of self-supervised video representation learning from a new perspective -- by video pace prediction.
It stems from the observation that human visual system is sensitive to video pace.
We randomly sample training clips in different paces and ask a neural network to identify the pace for each video clip.
arXiv Detail & Related papers (2020-08-13T12:40:24Z) - Generalized Few-Shot Video Classification with Video Retrieval and
Feature Generation [132.82884193921535]
We argue that previous methods underestimate the importance of video feature learning and propose a two-stage approach.
We show that this simple baseline approach outperforms prior few-shot video classification methods by over 20 points on existing benchmarks.
We present two novel approaches that yield further improvement.
arXiv Detail & Related papers (2020-07-09T13:05:32Z) - Unsupervised Learning of Video Representations via Dense Trajectory
Clustering [86.45054867170795]
This paper addresses the task of unsupervised learning of representations for action recognition in videos.
We first propose to adapt two top performing objectives in this class - instance recognition and local aggregation.
We observe promising performance, but qualitative analysis shows that the learned representations fail to capture motion patterns.
arXiv Detail & Related papers (2020-06-28T22:23:03Z) - Detecting Forged Facial Videos using convolutional neural network [0.0]
We propose to use smaller (fewer parameters to learn) convolutional neural networks (CNN) for a data-driven approach to forged video detection.
To validate our approach, we investigate the FaceForensics public dataset detailing both frame-based and video-based results.
arXiv Detail & Related papers (2020-05-17T19:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.