Convolutional Neural Networks for Multispectral Image Cloud Masking
- URL: http://arxiv.org/abs/2012.05325v1
- Date: Wed, 9 Dec 2020 21:33:20 GMT
- Title: Convolutional Neural Networks for Multispectral Image Cloud Masking
- Authors: Gonzalo Mateo-Garc\'ia, Luis G\'omez-Chova, Gustau Camps-Valls
- Abstract summary: Convolutional neural networks (CNN) have proven to be state of the art methods for many image classification tasks.
We study the use of different CNN architectures for cloud masking of Proba-V multispectral images.
- Score: 7.812073412066698
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Convolutional neural networks (CNN) have proven to be state of the art
methods for many image classification tasks and their use is rapidly increasing
in remote sensing problems. One of their major strengths is that, when enough
data is available, CNN perform an end-to-end learning without the need of
custom feature extraction methods. In this work, we study the use of different
CNN architectures for cloud masking of Proba-V multispectral images. We compare
such methods with the more classical machine learning approach based on feature
extraction plus supervised classification. Experimental results suggest that
CNN are a promising alternative for solving cloud masking problems.
Related papers
- Kronecker Product Feature Fusion for Convolutional Neural Network in
Remote Sensing Scene Classification [0.0]
CNN can extract hierarchical convolutional features from remote sensing imagery.
Two successful Feature Fusion methods, Add and Concat, are employed in certain state-of-the-art CNN algorithms.
We propose a novel Feature Fusion algorithm, which unifies the aforementioned methods using the Kronecker Product (KPFF)
arXiv Detail & Related papers (2024-01-08T19:01:01Z) - Training Convolutional Neural Networks with the Forward-Forward
algorithm [1.74440662023704]
Forward Forward (FF) algorithm has up to now only been used in fully connected networks.
We show how the FF paradigm can be extended to CNNs.
Our FF-trained CNN, featuring a novel spatially-extended labeling technique, achieves a classification accuracy of 99.16% on the MNIST hand-written digits dataset.
arXiv Detail & Related papers (2023-12-22T18:56:35Z) - Why do CNNs excel at feature extraction? A mathematical explanation [53.807657273043446]
We introduce a novel model for image classification, based on feature extraction, that can be used to generate images resembling real-world datasets.
In our proof, we construct piecewise linear functions that detect the presence of features, and show that they can be realized by a convolutional network.
arXiv Detail & Related papers (2023-07-03T10:41:34Z) - Classification of diffraction patterns using a convolutional neural
network in single particle imaging experiments performed at X-ray
free-electron lasers [53.65540150901678]
Single particle imaging (SPI) at X-ray free electron lasers (XFELs) is particularly well suited to determine the 3D structure of particles in their native environment.
For a successful reconstruction, diffraction patterns originating from a single hit must be isolated from a large number of acquired patterns.
We propose to formulate this task as an image classification problem and solve it using convolutional neural network (CNN) architectures.
arXiv Detail & Related papers (2021-12-16T17:03:14Z) - Deep Features for training Support Vector Machine [16.795405355504077]
This paper develops a generic computer vision system based on features extracted from trained CNNs.
Multiple learned features are combined into a single structure to work on different image classification tasks.
arXiv Detail & Related papers (2021-04-08T03:13:09Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer.
Our method uses a dual-objective activation and distance loss, without requiring a generator network nor modifications to the original model.
arXiv Detail & Related papers (2021-01-29T07:46:39Z) - Combining pretrained CNN feature extractors to enhance clustering of
complex natural images [27.784346095205358]
This paper aims at providing insight on the use of pretrained CNN features for image clustering (IC)
To solve this issue, we propose to rephrase the IC problem as a multi-view clustering (MVC) problem.
We then propose a multi-input neural network architecture that is trained end-to-end to solve the MVC problem effectively.
arXiv Detail & Related papers (2021-01-07T21:23:04Z) - Video-based Facial Expression Recognition using Graph Convolutional
Networks [57.980827038988735]
We introduce a Graph Convolutional Network (GCN) layer into a common CNN-RNN based model for video-based facial expression recognition.
We evaluate our method on three widely-used datasets, CK+, Oulu-CASIA and MMI, and also one challenging wild dataset AFEW8.0.
arXiv Detail & Related papers (2020-10-26T07:31:51Z) - Learning CNN filters from user-drawn image markers for coconut-tree
image classification [78.42152902652215]
We present a method that needs a minimal set of user-selected images to train the CNN's feature extractor.
The method learns the filters of each convolutional layer from user-drawn markers in image regions that discriminate classes.
It does not rely on optimization based on backpropagation, and we demonstrate its advantages on the binary classification of coconut-tree aerial images.
arXiv Detail & Related papers (2020-08-08T15:50:23Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.